Operator Sequence Context Influences Amino Acid-Base-pair Interactions in 434 Repressor-Operator Complexes

1993 ◽  
Vol 234 (3) ◽  
pp. 542-553 ◽  
Author(s):  
Adam C. Bell ◽  
Gerald B. Koudelka
Nature ◽  
1987 ◽  
Vol 326 (6116) ◽  
pp. 888-891 ◽  
Author(s):  
Robin P. Wharton ◽  
Mark Ptashne
Keyword(s):  

CrystEngComm ◽  
2012 ◽  
Vol 14 (11) ◽  
pp. 3851 ◽  
Author(s):  
Sathyanarayana Reddy Perumalla ◽  
Changquan Calvin Sun

2012 ◽  
Vol 67 (6) ◽  
pp. 589-593 ◽  
Author(s):  
Daniel Winkelhaus ◽  
Beate Neumann ◽  
Norbert W. Mitzel

The reaction of (C6F5)2BCl with 8-lithio-N,N-dimethyl-1-naphthylamine (1) afforded the fivemembered ring system 8-bis(pentafluorophenyl)boryl-N,N-dimethyl-1-naphthylamine (2) with an intramolecular dative B-N bond. The compound was characterised by elemental analysis, NMR spectroscopy and single-crystal X-ray diffraction.


1994 ◽  
Vol 14 (3) ◽  
pp. 1852-1860
Author(s):  
K Nakagomi ◽  
Y Kohwi ◽  
L A Dickinson ◽  
T Kohwi-Shigematsu

The nuclear matrix attachment DNA (MAR) binding protein SATB1 is a sequence context-specific binding protein that binds in the minor groove, making virtually no contact with the DNA bases. The SATB1 binding sites consist of a special AT-rich sequence context in which one strand is well-mixed A's, T's, and C's, excluding G's (ATC sequences), which is typically found in clusters within different MARs. To determine the extent of conservation of the SATB1 gene among different species, we cloned a mouse homolog of the human STAB1 cDNA from a cDNA expression library of the mouse thymus, the tissue in which this protein is predominantly expressed. This mouse cDNA encodes a 764-amino-acid protein with a 98% homology in amino acid sequence to the human SATB1 originally cloned from testis. To characterize the DNA binding domain of this novel class of protein, we used the mouse SATB1 cDNA and delineated a 150-amino-acid polypeptide as the binding domain. This region confers full DNA binding activity, recognizes the specific sequence context, and makes direct contact with DNA at the same nucleotides as the whole protein. This DNA binding domain contains a novel DNA binding motif: when no more than 21 amino acids at either the N- or C-terminal end of the binding domain are deleted, the majority of the DNA binding activity is lost. The concomitant presence of both terminal sequences is mandatory for binding. These two terminal regions consist of hydrophilic amino acids and share homologous sequences that are different from those of any known DNA binding motifs. We propose that the DNA binding region of SATB1 extends its two terminal regions toward DNA to make direct contact with DNA.


Sign in / Sign up

Export Citation Format

Share Document