Protein Kinase Cϵ Modulates Apoptosis Induced by β -Adrenergic Stimulation in Adult Rat Ventricular Myocytes via Extracellular Signal-regulated Kinase (ERK) Activity

2001 ◽  
Vol 33 (10) ◽  
pp. 1791-1803 ◽  
Author(s):  
Yukitaka Shizukuda ◽  
Peter M. Buttrick
2004 ◽  
Vol 287 (4) ◽  
pp. H1721-H1729 ◽  
Author(s):  
Koji Miyazaki ◽  
Satoshi Komatsu ◽  
Mitsuo Ikebe ◽  
Richard A. Fenton ◽  
James G. Dobson

Adenosine-induced antiadrenergic effects in the heart are mediated by adenosine A1 receptors (A1R). The role of PKCε in the antiadrenergic action of adenosine was explored with adult rat ventricular myocytes in which PKCε was overexpressed. Myocytes were transfected with a pEGFP-N1 vector in the presence or absence of a PKCε construct and compared with normal myocytes. The extent of myocyte shortening elicited by electrical stimulation of quiescent normal and transfected myocytes was recorded with video imaging. PKCε was found localized primarily in transverse tubules. The A1R agonist chlorocyclopentyladenosine (CCPA) at 1 μM rendered an enhanced localization of PKCε in the t-tubular system. The β-adrenergic agonist isoproterenol (Iso; 0.4 μM) elicited a 29–36% increase in myocyte shortening in all three groups. Although CCPA significantly reduced the Iso-produced increase in shortening in all three groups, the reduction caused by CCPA was greatest with PKCε overexpression. The CCPA reduction of the Iso-elicited shortening was eliminated in the presence of a PKCε inhibitory peptide. These results suggest that the translocation of PKCε to the t-tubular system plays an important role in A1R-mediated antiadrenergic actions in the heart.


2007 ◽  
Vol 27 (23) ◽  
pp. 8296-8305 ◽  
Author(s):  
Tomas Vomastek ◽  
Marcin P. Iwanicki ◽  
Hans-Joerg Schaeffer ◽  
Adel Tarcsafalvi ◽  
J. Thomas Parsons ◽  
...  

ABSTRACT The extracellular signal-regulated kinase (ERK) cascade is activated in response to a multitude of extracellular signals and converts these signals into a variety of specific biological responses, including cell differentiation, cell movement, cell division, and apoptosis. The specificity of the biological response is likely to be controlled in large measure by the localization of signaling, thus enabling ERK activity to be directed towards specific targets. Here we show that the RACK1 scaffold protein functions specifically in integrin-mediated activation of the mitogen-activated protein kinase/ERK cascade and targets active ERK to focal adhesions. We found that RACK1 associated with the core kinases of the ERK pathway, Raf, MEK, and ERK, and that attenuation of RACK1 expression resulted in a decrease in ERK activity in response to adhesion but not in response to growth factors. RACK1 silencing also caused a reduction of active ERK in focal adhesions, an increase in focal adhesion length, a decreased rate of focal adhesion disassembly, and decreased motility. Our data further suggest that focal adhesion kinase is an upstream activator of the RACK1/ERK pathway. We suggest that RACK1 tethers the ERK pathway core kinases and channels signals from upstream activation by integrins to downstream targets at focal adhesions.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 26
Author(s):  
Xiaojia Guo ◽  
Rong Ju ◽  
Charles Cha ◽  
Michael Simons

Adrenomedullin 2 plays diverse physiological roles such as regulating cardiovascular functions and blood pressure. It was reported that adrenomedullin 2 can activate protein kinase C in murine ventricular myocytes to augment cardiomyocyte contractile function. Using a protein kinase Cα knockout mouse model, we show here that adrenomedullin 2 activates extracellular-signal-regulated kinase in a protein kinase Cα-independent mechanism in endothelial cells.


2005 ◽  
Vol 83 (11) ◽  
pp. 1015-1024 ◽  
Author(s):  
Shetuan Zhang ◽  
Jijin Lin ◽  
Yuji Hirano ◽  
Masayasu Hiraoka

We found when L-type calcium current (ICa-L) was recorded with the perforated patch-clamp method in rat ventricular myocytes that bath application of phenylephrine (with propranolol) evoked a biphasic response characterized by an initial transient suppression followed by a sustained potentiation. The transient suppression occurred 30–60 s after phenylephrine perfusion and reached peak inhibition at approximately 2 min. The biphasic modulation of ICa-L was also elicited by methoxamine, and the effects of phenylephrine were blocked by prazosin, indicating that the responses were mediated through α1-adrenoceptors. Pretreatment of cells with H7 (100 µmol/L), a broad-spectrum protein kinase inhibitor that inhibits both protein kinase C and A, eliminated potentiation but did not affect transient suppression. The transient suppression occurred concurrently with the acceleration of the fast component of ICa-L inactivation. Depletion of intracellular Ca2+ stores by ryanodine plus caffeine or thapsigargin eliminated the transient suppression. When ICa-L was recorded with whole-cell patch-clamp and with 0.05 mmol/L EGTA in the pipette solution to allow intracellular Ca2+ to fluctuate, phenylephrine evoked a transient suppression as in the perforated patch recordings. Heparin, a specific blocker of IP3 (inositol 1,4,5-trisphosphate) receptors, eliminated the phenylephrine-induced transient suppression of ICa-L when added to the pipette solution. Intensive chelation of intracellular Ca2+ by 5 mmol/L BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid) in the pipette solution also eliminated the phenylephrine-induced transient suppression of ICa-L. We conclude that transient increase in the concentration of intracellular calcium ([Ca2+]i) caused by Ca2+ release from intracellular stores underlies the transient suppression of ICa-L, whereas the potentiation of ICa-L is a result of activation of protein kinases.Key words: Ca2+ mobilization, IP3, Ca2+-induced inactivation of Ca2+ current, perforated patch-clamp.


Sign in / Sign up

Export Citation Format

Share Document