Secondary chemistry of cultured mycobionts: formation of a complete chemosyndrome by the lichen fungus of Lobaria spathulata

2002 ◽  
Vol 34 (4) ◽  
pp. 351-359 ◽  
Author(s):  
Elfie Stocker-Wörgötter ◽  
John A. Elix

AbstractThe study aimed to optimize culture conditions and nutrient requirements for theproduction of secondary metabolites by the cultured mycobiont Lobaria spathulata. This species proved to be an excellent model system for such studies, as the complete chemosyndromefound in the natural lichen thallus was repeatedly formed in the cultured mycobiont with differentiated, aerial mycelia. Nutrient media containing the disaccharide, sucrose, were found to favour both rapid growth and the production of typical lichen substances. Higher proportions of the secondary compounds were detected in the developing mycobiont than in mature lichen thalli.

1999 ◽  
Vol 31 (3) ◽  
pp. 307-314 ◽  
Author(s):  
A. P. Torzilli ◽  
P. A. Mikelson ◽  
J. D. Lawrey

AbstractIt has been suggested that the host specificity exhibited by some lichenicolous fungi depends on their ability to tolerate the secondary chemistry of potential host lichens. For example, the lichen parasite Marchandiomyces corallinus is able to degrade the tissues of the lichen Flavoparmelia baltimorensis irrespective of the presence or absence of endogenous phenolic compounds. In contrast, the degradation of tissues from the lichen Lasallia papulosa is suppressed when endogenous phenolics are not removed. We have investigated the physiological basis of this inhibition in order to understand more about how lichen chemistry infiuences host preference in lichenicolous fungi. Results showed that the secondary compounds from L. papulosa inhibit the overall growth of M. corallimis, but not the catalytic activity of its tissue-degrading polysaccharidases. This effect is different from that shown by another lichen parasite, Nectria parmeliae, where lichen compounds specifically inhibited polysaccharidase activity. Compared with the compounds of L. papulosa, the endogenous phenolics of F. baltimorensis inhibited the growth of M. corallimis substantially less and exhibited little or no inhibition of polysaccharidases. For M. corallimis, host preference appears to be associated with physiological adaptation to the chemistry of F. baltimorensis.


2004 ◽  
Vol 94 (2) ◽  
pp. 137-143 ◽  
Author(s):  
R. Deml

AbstractHaemolymph and osmeterial secretions of caterpillars of Lymantria monacha (Linnaeus) and L. concolor Walker were analysed by gas chromatography/mass spectrometry for low molecular weight secondary metabolites. The similarities of their chemical compositions were determined by means of cluster analysis techniques in order to characterize possible chemical variations related to developmental stage or food of the larvae. For this purpose, two dissimilarity coefficients (Euclidean distances, Canberra metrics) and four clustering methods (UPGMA, WPGMA, WPGMC, single linkage) were combined. The patterns of secondary compounds obtained from the haemolymph and osmeterial secretions studied did not differ statistically significantly between two groups of L. monacha larvae fed with either larch, Larix decidua Mil., or Norway spruce, Picea abies (L.), indicating no relevant influence of plant chemistry. However, haemolymph of penultimate instar larvae of L. concolor fed on Rhododendroncontained a mixture of compounds differing statistically significantly from that of last instar caterpillars. The total compositions of the corresponding gland secretions were statistically identical though the presence/amounts of individual compounds varied. This suggested that the haemolymph composition reflected changing physiological requirements of the successive instars, whereas the composition of the defensive mixtures remained comparatively constant, possibly due to a constant spectrum of potential enemies. A more pronounced age-dependence of larval chemistry was shown by a similar analysis of data from various developmental stages of L. dispar (Linnaeus) and one of its food plants. This analysis suggested plant composition affected the secondary chemistry of early larval instars of L. dispar. The results are discussed in terms of the roles of secondary metabolites in defence against natural enemies.


Author(s):  
Oğuzhan Yanar ◽  
Elif Fatma Topkara

Plants have developed mechanical and chemical defense strategies that are effective against herbivores. Plants contain chemicals that are known as secondary metabolites (allelochemical) and these chemicals do not directly involve in organisms’ reproduction and growth, on the other hand, they affect survival, growth and behavior of species. These compounds usually take ecological tasks and plants use these compounds against diseases, parasites, and predators for interspecies competition. It is known through the observations on feeding of herbivorous insects that these compounds act as deterrent chemicals or they are toxic against them. Feeding is one of the most fundamental and the most important behaviors for herbivorous insects. Even though host plant preference of herbivores is partially depend on nutrients, this behavior greatly depends on secondary chemistry of plants. Effects of secondary compounds on herbivorous insects can be positive or negative.


2005 ◽  
Vol 83 (10) ◽  
pp. 1189-1206 ◽  
Author(s):  
Peter J. Facchini ◽  
David A. Bird ◽  
Richard Bourgault ◽  
Jillian M. Hagel ◽  
David K. Liscombe ◽  
...  

Remarkable progress on the biology of plant secondary metabolism has recently been realized. The application of advanced biochemistry, molecular, cellular, and genomic methodologies has revealed biological paradigms unique to the biosynthesis of secondary metabolites, including alkaloids, flavonoids, glucosinolates, phenylpropanoids, and terpenoids. The use of model plant systems has facilitated integrative research on the biosynthesis and regulation of each group of natural products. The model legume, Medicago truncatula Gaertn., plays a key role in studies on phenylpropanoid and flavonoid metabolism. Mint ( Mentha × piperita L.) and various conifers are the systems of choice to investigate terpenoid metabolism, whereas members of the mustard family (Brassica spp.) are central to work on glucosinolate pathways. Arabidopsis thaliana (L.) Heynh. is also used to study the biosynthesis of most secondary compounds, except alkaloids. Unlike other categories of secondary metabolites, the many structural types of alkaloids are biosynthetically unrelated. The biology of each group is unique, although common paradigms are also apparent. Opium poppy ( Papaver somniferum L.) produces a large number of benzylisoquinoline alkaloids and has begun to challenge Madigascar periwinkle ( Catharanthus roseus (L.) G. Don), which accumulates monoterpenoid indole alkaloids, as the most versatile model system to study alkaloid metabolism. An overview of recent progress on the biology of plant alkaloid biosynthesis, with a focus on benzylisoquinoline alkaloid pathways in opium poppy and related species, highlights the emergence of opium poppy as an important model system to investigate secondary metabolism.


2010 ◽  
Vol 65 (3-4) ◽  
pp. 157-173 ◽  
Author(s):  
Katalin Molnár ◽  
Edit Farkas

Lichens are symbiotic organisms of fungi and algae or cyanobacteria. Lichen-forming fungi synthesize a great variety of secondary metabolites, many of which are unique. Developments in analytical techniques and experimental methods have resulted in the identification of about 1050 lichen substances (including those found in cultures). In addition to their role in lichen chemotaxonomy and systematics, lichen secondary compounds have several possible biological roles, including photoprotection against intense radiation, as well as allelochemical, antiviral, antitumor, antibacterial, antiherbivore, and antioxidant action. These compounds are also important factors in metal homeostasis and pollution tolerance of lichen thalli. Although our knowledge of the contribution of these extracellular products to the success of the lichen symbiosis has increased significantly in the last decades, their biotic and abiotic roles have not been entirely explored.


Author(s):  
G.N. Hariharan ◽  
S. Karthik ◽  
S. Muthukumar

The mycobiont and whole thallus cultures of Roccella montagnei Bel. were established using soredia as an inoculum.The mycobiont cultures showed optimum growth, biomass and biosynthesis of compounds in Lilly and Barnett medium with glucose as a carbon source, micronutrients and vitamins. After the incubation period of 180 days, the cultures were harvested, and their biomass and secondary compound profiles were analysed. The HPTLC chromatogram of the acetone extract of the NT and mycobiont cultures revealed erythrinas the major biosynthesized compound in both and identified as a key biosynthate by R. montagnei. Further, the NT biosynthesized 5 additional compounds and themycobiont cultures biosynthesized 6 additional compounds. The molecular identity of the cultured mycobiont was confirmed using nuclear ribosomal Internal Transcribed Spacer (ITS) as well as the secondary chemistry. Lichen compound erythrin was identified as a key biosynthate by the cultures.


3 Biotech ◽  
2021 ◽  
Vol 11 (8) ◽  
Author(s):  
Denis V. Axenov-Gribanov ◽  
Maria M. Morgunova ◽  
Ulyana A. Vasilieva ◽  
Stanislav V. Gamaiunov ◽  
Maria E. Dmitrieva ◽  
...  

Author(s):  
Denise Dealing

The alpine provides a tremendous opportunity for studying plant-herbivore interactions at the population, community, and ecosystem levels. For herbivores, variations in topography and microclimate result in a relatively large amount of spatial variation in plant communities within short distances (chapter 6). A large community of herbivores, from nematodes to grasshoppers to elk, occurs on Niwot Ridge. Furthermore, given the low rates of nutrient availability in alpine soils (Fisk and Schmidt 1995; chapter 12) combined with the slow-growing perennial habit of the vegetation, alpine plants should, in theory, invest heavily in defense against herbivores (Coley et al. 1985). The goal of this chapter is to provide: (1) a summary of the feeding behaviors of the herbivores on Niwot Ridge, (2) information on the nutritional and secondary chemistry of plants on Niwot Ridge as it relates to herbivory, and (3) a review of hypotheses on community dynamics of herbivores and plants relevant to the alpine. The ultimate objective is to provide a synthesis of information that will stimulate interest in alpine tundra as a system for studying the dynamics of plant-herbivore interactions at all levels of ecological organization. The flora of Niwot Ridge has been divided into six communities (May and Webber 1982; chapter 6). Regardless of community association, nearly all of the plant species occurring on the ridge are perennials and several are very long lived (May and Webber 1982). Communities can change across small spatial scales (meters), and community origin and maintenance are believed to be largely determined by abiotic factors (Walker et al. 1994; chapter 6). However, several studies suggest that biotic factors such as herbivory may have a significant impact on plant community dynamics (Huntly et al. 1986; Davies 1994). There is significant variation in the nutritional composition of plants on Niwot Ridge. Generally, and in the absence of plant secondary compounds, species that are high in nitrogen and low in fiber are presumed to be the most desirable as forage. Based solely on these nutritional variables, the clover Trifolium parryi is hypothesized to be one of the more-preferred forages, whereas alpine sandwort, Minuartia obtusiloba, should be one of the less-preferred food items.


1998 ◽  
Vol 4 (S2) ◽  
pp. 1132-1133
Author(s):  
Heide Schatten ◽  
Amitabha Chakrabarti ◽  
Meghan Taylor ◽  
Michael Crosser ◽  
Kirk Mitchell

Sea urchins have been used for over a century as a remarkable animal model system in which to study cell, molecular, and developmental biology. The studies presented here have used sea urchin eggs and embryos for pioneering experiments to explore the effects of microgravity on the cytoskeleton during a space flight on the space shuttle Endeavor. The culture conditions followed those described previously utilizing the Aquatic Research Facility (ARF) to fertilize and culture eggs and embryos up to the pluteus stage under controlled temperature (12°C) and fixation conditions. To achieve a final fixation with 0.5% glutaraldehyde and 4μM taxol, concentrated fixation fluid was injected at preselected time points to preserve microtubules, centrioles, centrosomes, microfilaments, mitochondria, and cell membranes.The analysis of the results revealed that the centriole-centrosome complex during cell division and cilia formation showed alterations in samples that had been exposed to microgravity while control cells cultured in a centrifuge at lg in space and those cultured on ground appeared normal.


2009 ◽  
Vol 4 (9) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
M. Soledade C. Pedras ◽  
Yang Yu

The metabolites produced by the fungal species Leptosphaeria maculans and L. biglobosa under different culture conditions, together with their phytotoxic activities are reviewed. In addition, the biosynthetic studies of blackleg metabolites carried out to date are described and suggestions for species reclassification are provided.


Sign in / Sign up

Export Citation Format

Share Document