Receptor specificity of adherence of Streptococcus pneumoniae to human type-II pneumocytes and vascular endothelial cells in vitro

1994 ◽  
Vol 17 (6) ◽  
pp. 361-374 ◽  
Author(s):  
Diana R. Cundell ◽  
Elaine I. Tuomanen
1986 ◽  
Vol 60 (5) ◽  
pp. 1584-1589 ◽  
Author(s):  
E. E. Schneeberger ◽  
K. M. McCarthy

The distribution of sodium-potassium-activated adenosinetriphosphatase (Na+-K+-ATPase) in the alveolar portion of rat lungs was examined by indirect immunofluorescence with the use of a mouse monoclonal anti-rat Na+-K+-ATPase and by ultrastructural cytochemistry using p-nitrophenylphosphate as substrate. The reaction was inhibitable by 10 mM ouabain or by the omission of K+ from the reaction mixture. Cysteine or levamisole was used to inhibit alkaline phosphatase activity. By immunofluorescence, staining was confined to cuboidal cells in alveolar spaces. These were tentatively identified as type II pneumocytes. By ultrastructural cytochemistry reaction product was present on the cytoplasmic side of the basolateral membranes of type II pneumocytes. No reaction product was observed in type I pneumocytes or in endothelium. These results indicate that type II pneumocytes contain more Na+-K+-ATPase, an enzyme important in vectorial electrolyte transport, than type I pneumocytes or endothelial cells. More sensitive methods, however, are required to determine the amounts and distribution of this enzyme in type I pneumocytes and pulmonary vascular endothelial cells.


1996 ◽  
Vol 316 (3) ◽  
pp. 703-707 ◽  
Author(s):  
Ralf BIRKENHÄGER ◽  
Bernard SCHNEPPE ◽  
Wolfgang RÖCKL ◽  
Jörg WILTING ◽  
Herbert A. WEICH ◽  
...  

Vascular endothilial growth factor (VEGF) and placenta growth factor (PIGF) are members of a dimeric-growth-factor family with angiogenic properties. VEGF is a highly potent and specific mitogen for endothelial cells, playing a vital role in angiogenesis in vivo. The role of PIGF is less clear. We expressed the monomeric splice forms VEGF-165, VEGF-121, PIGF-1 and PlGF-2 as unfused genes in Escherichia coli using the pCYTEXP expression system. In vitro dimerization experiments revealed that both homo- and hetero-dimers can be formed from these monomeric proteins. The dimers were tested for their ability to promote capillary growth in vivo and stimulate DNA synthesis in cultured human vascular endothelial cells. Heterodimers comprising different VEGF splice forms, or combinations of VEGF/PlGF splice forms, showed mitogenic activity. The results demonstrate that four different heterodimeric growth factors are likely to have as yet uncharacterized functions in vivo.


2018 ◽  
Vol 47 (1) ◽  
pp. 453-469 ◽  
Author(s):  
Ying Yang ◽  
Hui Luo ◽  
Can Zhou ◽  
Rongyi Zhang ◽  
Si Liu ◽  
...  

Objective This study aimed to examine regulation of capillary tubules and lipid formation in vascular endothelial cells and macrophages via extracellular vesicle-mediated microRNA (miRNA)-4306 transfer Methods Whole blood samples (12 mL) were collected from 53 patients, and miR-4306 levels in extracellular vesicles (EVs) were analyzed by reverse transcription-polymerase chain reaction. Human coronary artery vascular endothelial cells (HCAECs) and human monocyte-derived macrophages (HMDMs) were transfected with a scrambled oligonucleotide, an miR-4306 mimic, or an anti-miR-4306 inhibitor. The direct effect of miR-4306 on the target gene was analyzed by a dual-luciferase reporter assay. Results EV-contained miR-4306 released from HMDMs was significantly upregulated in coronary artery disease. Oxidized low-density lipoprotein (ox-LDL)-stimulated HMDM-derived EVs inhibited proliferation, migration, and angiogenesis abilities of HCAECs in vitro. However, ox-LDL-stimulated HCAEC-derived EVs enhanced lipid formation of HMDMs. The possible mechanism of these findings was partly due to EV-mediated miR-4306 upregulation of the Akt/nuclear factor kappa B signaling pathway. Conclusions Paracrine cellular crosstalk between HCAECs and HMDMs probably supports the pro-atherosclerotic effects of EVs under ox-LDL stress.


Sign in / Sign up

Export Citation Format

Share Document