Variation of Rb/Sr Ratios in the Loess-Paleosol Sequences of Central China during the Last 130,000 Years and Their Implications for Monsoon Paleoclimatology

1999 ◽  
Vol 51 (3) ◽  
pp. 215-219 ◽  
Author(s):  
Jun Chen ◽  
Zhisheng An ◽  
John Head

AbstractRb, Sr, and magnetic susceptibility have been measured in the last interglacial–glacial loess profiles at Luochuan and Huanxian, central China. A high degree of similarity between the parameters in both profiles suggests that variations of Rb/Sr ratios in the sequence can be regarded as an indicator of East Asian summer monsoon strength. Matching the Rb/Sr record with the SPECMAP δ18O curve suggests that the Rb/Sr ratio responds sensitively to changes of the East Asian monsoon induced by global ice-volume variation.

2021 ◽  
Vol 13 (9) ◽  
pp. 4848
Author(s):  
Liwei Wu ◽  
Xinling Li ◽  
Qinghai Xu ◽  
Manyue Li ◽  
Qiufeng Zheng ◽  
...  

The East Asian monsoon system is an important part of global atmospheric circulation; however, records of the East Asian monsoon from different regions exhibit different evolutionary rhythms. Here, we show a high-resolution record of grain size and pollen data from a lacustrine sediment core of Dajiuhu Lake in Shennongjia, Hubei Province, China, in order to reconstruct the paleovegetation and paleoeclimate evolution of the Dajiuhu Basin since the late Middle Pleistocene (~237.9 ka to the present). The results show that grain size and pollen record of the core DJH-2 are consistent with the δ18O record of stalagmites from Sanbao Cave in the same area, which is closely related to the changes of insolation at the precessional (~20-kyr) scale in the Northern Hemisphere. This is different from the records of the Asian summer monsoon recorded in the Loess Plateau of North China, which exhibited dominant 100-kyr change cyclicities. We suggest that the difference between paleoclimatic records from North and South China is closely related to the east–west-oriented mountain ranges of the Qinling Mountains in central China that blocked weakened East Asia summer monsoons across the mountains during glacial periods.


2021 ◽  
Vol 558 ◽  
pp. 116758
Author(s):  
Yanjun Cai ◽  
Xing Cheng ◽  
Le Ma ◽  
Ruixue Mao ◽  
Sebastian F.M. Breitenbach ◽  
...  

2008 ◽  
Vol 4 (6) ◽  
pp. 1289-1317 ◽  
Author(s):  
D.-D. Rousseau ◽  
N. Wu ◽  
Y. Pei ◽  
F. Li

Abstract. Chinese loess sequences are interpreted as a reliable record of the past variation of the East Asian monsoon regime through the alternation of loess and paleosols units, dominated by the winter and summer monsoon, respectively. Different proxies have been used to describe this system, mostly geophysical, geochemical or sedimentological. Terrestrial mollusks are also a reliable proxy of past environmental conditions and are often preserved in large numbers in loess deposits. The analysis of the mollusk remains in the Luochuan sequence, comprising L5 loess to S0 soil, i.e. the last 500 ka, shows that for almost all identified species, the abundance is higher at the base of the interval (L5 to L4) than in the younger deposits. Using the present ecological requirements of the identified mollusk species in the Luochuan sequence allows the definition of two main mollusk groups varying during the last 500 kyr. The cold-aridiphilous individuals indicate the so-called Asian winter monsoon regime and predominantly occur during glacials, when dust is deposited. The thermal-humidiphilous mollusks are prevalent during interglacial or interstadial conditions of the Asian summer monsoon, when soil formation takes place. In the sequence, three events with exceptionally high abundance of the Asian summer monsoon indicators are recorded during the L5, L4 and L2 glacial intervals, i.e., at about 470, 360 and 170 kyr, respectively. The L5 and L4 events appear to be the strongest (high counts). Similar variations have also been identified in the Xifeng sequence, distant enough from Luochuan, but also in Lake Baikal further North, to suggest that this phenomenon is regional rather than local. The indicators of the summer monsoon within the glacial intervals imply a strengthened East-Asian monsoon interpreted as corresponding to marine isotope stages 6, 10 and 12, respectively. The L5 and L2 summer monsoons are coeval with Mediterranean sapropels S12 and S6, which characterize a strong African summer monsoon with relatively low surface water salinity in the Indian Ocean. Changes in the precipitation regime could correspond to a response to a particular astronomical configuration (low obliquity, low precession, summer solstice at perihelion) leading to an increased summer insolation gradient between the tropics and the high latitudes and resulting in enhanced atmospheric water transport from the tropics to the African and Asian continents. However, other climate drivers such as reorganization of marine and atmospheric circulations, tectonic, and the extent of the Northern Hemisphere ice sheet are also discussed.


2021 ◽  
Author(s):  
Peng Gao ◽  
Junsheng Nie

<p>The middle Piacenzian period is the closest sustained warm interval and a possible analog to the future climate. It is well known that global ice volume exhibits dominant 41-kyr cyclicities. However, high resolution terrestrial paleoenvironmental records are scare. Here we present a 3.6 kyr terrestrial environmental variation record from Teruel Basin of Spain and compare the results with the East Asian monsoon records. The Spain results show dominant 41-kyr cycles during the early Piacenzian (3.3-3.15 Ma) when eccentricity was at minimum, but the 41-kyr cycles weakens during the late Piacenzian 3.15-2.95 Ma when eccentricity got increased, suggesting direct forcing by insolation. This pattern is different from the monsoonal records from China, which demonstrates persistent 20-kyr cycles during the entire middle Piacenzian. The strong 41-kyr cycles in westerly region during the early Piacenzian may originate from its higher latitude and higher sensitivity to insolation gradient forcing.</p>


2016 ◽  
Vol 86 (3) ◽  
pp. 287-294 ◽  
Author(s):  
Els E. van Soelen ◽  
Naohiko Ohkouchi ◽  
Hisami Suga ◽  
Jaap S. Sinninghe Damsté ◽  
Gert-Jan Reichart

AbstractPrecipitation in Japan is strongly affected by the East Asian monsoon system, resulting in wet summer conditions and relatively dry winter conditions. Few paleo-monsoon records exist from northeastern Asia, especially records showing decadal- to centennial-scale variability. Here we present a molecular hydrogen isotope (δD) record from Lake Kaiike, a small coastal lake in southwest Japan, to provide insight into monsoonal precipitation over the past two millennia. The δD record of friedelin, a terrestrial higher plant lipid, reveals three major shifts in precipitation: a decline from >-185‰ to <-190‰ at 1700 cal yr BP suggests a change to wetter conditions; values between -187.5‰ and -180‰ from 1480 to 800 cal yr BP indicate reduced precipitation; and a decline to below -195‰ after 800 cal yr BP reflects moist conditions during the Little Ice Age. These results highlight variability in the intensity of the East Asian Summer Monsoon occurring on decadal to centennial time scales. El Niño-like conditions are likely responsible for periods of high monsoon intensity, but comparison with other records in the region (northeast China and Japan) shows that contradicting patterns also exist, and so explaining these rainfall patterns is not straightforward.


2018 ◽  
Author(s):  
Yesi Zhao ◽  
Jiangfeng Shi ◽  
Shiyuan Shi ◽  
Xiaoqi Ma ◽  
Weijie Zhang ◽  
...  

Abstract. Historical hydroclimate records derived from tree-ring parameters are scarce in the core region of East Asian Summer Monsoon (EASM) in China, limiting our understanding of the inter-decadal hydroclimate variability of this region and its possible connections with the EASM. In this study, standard chronologies of total tree-ring width (TRW), earlywood width (EWW), and latewood width (LWW) were created using tree-ring samples of Pinus tabulaeformis in the eastern Qinling Mountains, Central China. The strongest growth-climate relationship was found between EWW and May–July self-calibrated Palmer Drought Severity Index (MJJ scPDSI). Therefore, a linear regression model, which explained 50.3 % of the variance in MJJ scPDSI (1951–2005), was developed to estimate the past MJJ scPDSI variations using EWW. The time series of MJJ scPDSI was extended back to the year 1866, and validated by independent hydroclimate series from nearby regions. Before the mid-1950s, the variations of MJJ scPDSI were in-phase with those of EASM intensity on decadal and longer timescales, suggesting that wet conditions would occur in the eastern Qinling Mountains when EASM was strengthened. Since the mid-1950s, however, the relationship has been out-of-phase. This phase change may be associated with an intensified dipole pattern of EASM precipitation.


2019 ◽  
Author(s):  
Fucai Duan ◽  
Zhenqiu Zhang ◽  
Yi Wang ◽  
Jianshun Chen ◽  
Zebo Liao ◽  
...  

Abstract. Variations of East Asian summer monsoon (EASM) during the last millennium could help enlighten the monsoonal response to future global warming. Here we present a precisely dated and highly resolved stalagmite δ18O record from the Yongxing Cave, central China. Our new record, combined with a previously published one from the same cave, indicates that the EASM has changed dramatically in association with the global temperature rising. In particular, our record shows that the EASM has intensified during the Medieval Climate Anomaly (MCA) and the Current Warm Period (CWP) but weakened during the Little Ice Age (LIA). We find that the EASM intensity is similar during the MCA and CWP periods in both northern and central China, but relatively stronger during the CWP in southern China. This discrepancy indicates a complicated regional response of the EASM to the anthropogenic forcing. The intensified and weakened EASM during the MCA and LIA matches well with the warm and cold phases of Northern Hemisphere surface air temperature, respectively. This EASM pattern also corresponds well with the rainfall over the tropical Indo-Pacific warm pool. Surprisingly, our record shows a strong association with the North Atlantic climate as well. The intensified (weakened) EASM correlates well with positive (negative) phases of North Atlantic Oscillation. In addition, our record links well with the strong (weak) Atlantic meridional overturning circulation during the MCA (LIA) period. All above-mentioned correlations indicate that the EASM tightly couples with oceanic processes in the tropical Pacific and North Atlantic oceans during the MCA and LIA.


2006 ◽  
Vol 65 (3) ◽  
pp. 443-449 ◽  
Author(s):  
Stephen C. Porter ◽  
Zhou Weijian

AbstractEighteen radiocarbon-dated eolian and paleosol profiles within a 1500-km-long belt along the arid to semi-arid transition zone of north-central China record variations in the extent and strength of the East Asian summer monsoon during the Holocene. Dated paleosols and peat layers represent intervals when the zone was dominated by a mild, moist summer monsoon climate that favored pedogenesis and peat accumulation. Brief intervals of enhanced eolian activity that resulted in the deposition of loess and eolian sand were times when strengthened winter monsoon conditions produced a colder, drier climate. The monsoon variations correlate closely with variations in North Atlantic drift-ice tracers that represent episodic advection of drift ice and cold polar surface water southward and eastward into warmer subpolar water. The correspondence of these records over the full span of Holocene time implies a close relationship between North Atlantic climate and the monsoon climate of central China.


The Holocene ◽  
2018 ◽  
Vol 28 (10) ◽  
pp. 1631-1641 ◽  
Author(s):  
Na Zhang ◽  
Yan Yang ◽  
Hai Cheng ◽  
Jingyao Zhao ◽  
Xunlin Yang ◽  
...  

We present a continuous C-O isotope series that shows the detailed variability of East Asian summer monsoon (EASM) since 11.0 ka BP. The series is based on two stalagmites, namely, DSY1 and LM2, which were, respectively, obtained from Dongshiya and Laomu caves. The δ18O profiles of stalagmite excurse negatively in early Holocene and gradually become positive after around 6.9 ka BP, tracking the change in Northern Hemisphere summer insolation. Moreover, the ‘early-Holocene maximum’ supported by stalagmite δ18O records differs from the ‘mid-Holocene maximum’ indicated by geological archives, such as lake sediments and loess. This difference may be caused by different definition indicators of monsoon intensity. Stalagmite δ18O is relative to EASM intensity, but irrelative to precipitation in the East Asian monsoon region. The time intervals of EASM maximum and Holocene climatic optimum are desynchronized, which is confirmed by the variation in the stalagmite δ13C series. Stalagmite δ13C and δ18O have different variation tendencies. The tendency of δ13C in early mid-Holocene was generally light, but it was discontinuity and disrupted by rapid positive shift between 8.2 and 7.7 ka BP. We conclude that a rapid shift of about 8 ka BP is a turning point, before and after which δ13 C acquires different controlling factors. Stalagmite δ13 C showed no signs of positive excurse in late Holocene but it exhibited another characteristic, namely, millennial time scale oscillations. The few changes in stalagmite δ13 C is attributed to weakened insolation during summer in the northern hemisphere, which leads to low evaporation rate, thereby modulating effective humidity change. The edge of the seasonal monsoonal front in northern China during monsoon recession is sensitive to the rain belt and causes the δ13 C of the stalagmite to fluctuate greatly. This phenomenon shows that the climate in the study area is unstable in the late Holocene


Sign in / Sign up

Export Citation Format

Share Document