scholarly journals Higher Selection Pressure from Antiretroviral Drugs in Vivo Results in Increased Evolutionary Distance in HIV-1 pol

Virology ◽  
1999 ◽  
Vol 259 (1) ◽  
pp. 154-165 ◽  
Author(s):  
Huldrych F. Günthard ◽  
Andrew J. Leigh-Brown ◽  
Richard T. D'Aquila ◽  
Victoria A. Johnson ◽  
Daniel R. Kuritzkes ◽  
...  
Virology ◽  
1999 ◽  
Vol 261 (2) ◽  
pp. 367
Author(s):  
Huldrych F. Günthard ◽  
Andrew J. Leigh-Brown ◽  
Richard T. D’Aquila ◽  
Victoria A. Johnson ◽  
Daniel R. Kuritzkes ◽  
...  

2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Said A. Hassounah ◽  
Ahmad Alikhani ◽  
Maureen Oliveira ◽  
Simrat Bharaj ◽  
Ruxandra-Ilinca Ibanescu ◽  
...  

ABSTRACT Animal models are essential to study novel antiretroviral drugs, resistance-associated mutations (RAMs), and treatment strategies. Bictegravir (BIC) is a novel potent integrase strand transfer inhibitor (INSTI) that has shown promising results against HIV-1 infection in vitro and in vivo and against clinical isolates with resistance against INSTIs. BIC has a higher genetic barrier to the development of resistance than two clinically approved INSTIs, termed raltegravir and elvitegravir. Another clinically approved INSTI, dolutegravir (DTG) also possesses a high genetic barrier to resistance, while a fourth compound, termed cabotegravir (CAB), is currently in late phases of clinical development. Here we report the susceptibilities of simian immunodeficiency virus (SIV) and HIV-1 integrase (IN) mutants containing various RAMs to BIC, CAB, and DTG. BIC potently inhibited SIV and HIV-1 in single cycle infection with 50% effective concentrations (EC50s) in the low nM range. In single cycle SIV infections, none of the E92Q, T97A, Y143R, or N155H substitutions had a significant effect on susceptibility to BIC (≤4-fold increase in EC50), whereas G118R and R263K conferred ∼14-fold and ∼6-fold increases in EC50, respectively. In both single and multiple rounds of HIV-1 infections, BIC remained active against the Y143R, N155H, R263K, R263K/M50I, and R263K/E138K mutants (≤4-fold increase in EC50). In multiple rounds of infection, the G140S/Q148H combination of substitutions decreased HIV-1 susceptibility to BIC 4.8-fold compared to 16.8- and 7.4-fold for CAB and DTG, respectively. BIC possesses an excellent resistance profile in regard to HIV and SIV and could be useful in nonhuman primate models of HIV infection.


2008 ◽  
Vol 56 (5) ◽  
pp. 752-769 ◽  
Author(s):  
Erik R. Kline ◽  
Roy L. Sutliff

Since the emergence of highly active antiretroviral therapy (HAART), human immunodeficiency virus-1 (HIV-1)-infected patients have demonstrated dramatic decreases in viral burden and opportunistic infections, and an overall increase in life expectancy. Despite these positive HAART-associated outcomes, it has become increasingly clear that HIV-1 patients have an enhanced risk of developing cardiovascular disease over time. Clinical studies are instrumental in our understanding of vascular dysfunction in the context of HIV-1 infection. However, most clinical studies often do not distinguish whether HIV-1 proteins, HAART, or a combination of these 2 factors cause cardiovascular complications. This review seeks to address the roles of both HIV-1 proteins and antiretroviral drugs in the development of endothelial dysfunction because endothelial dysfunction is the hallmark initial step of many cardiovascular diseases. We analyze recentin vitroandin vivostudies examining endothelial toxicity in response to HIV-1 proteins or in response to the various classes of antiretroviral drugs. Furthermore, we discuss the multiple mechanisms by which HIV-1 proteins and HAART injure the vascular endothelium in HIV-1 patients. By understanding the molecular mechanisms of HIV-1 protein- and antiretroviral-induced cardiovascular disease, we may ultimately improve the quality of life of HIV-1 patients through better drug design and the discovery of new pharmacological targets.


2003 ◽  
Vol 77 (18) ◽  
pp. 10028-10036 ◽  
Author(s):  
Leor S. Weinberger ◽  
David V. Schaffer ◽  
Adam P. Arkin

ABSTRACT Recent reports confirm that, due to the presence of long-lived, latently infected cell populations, eradication of human immunodeficiency virus type 1 (HIV-1) from infected patients by using antiretroviral drugs will be exceedingly difficult. An alternative to virus eradication may be to use gene therapy to induce a pseudo-latent state in virus-producing cells, thus transforming HIV-1 into a lifelong, but manageable, virus. Conditionally replicating HIV-1 (crHIV-1) gene therapy vectors provide an avenue for subduing HIV-1 expression in infected cells (by creating a parasite, crHIV-1, of the parasite HIV-1), potentially reducing the HIV-1 set point and delaying AIDS onset. Development of crHIV-1 vectors has proceeded in vitro, but the requirements for a crHIV-1 vector to proliferate and persist in vivo have not been explored. We expand a widely accepted mathematical model of HIV-1 in vivo dynamics to include a crHIV-1 gene therapy virus and derive a simple criterion for designing crHIV-1 viruses that will persist in vivo. The model introduces only two new parameters—HIV-1 inhibition and crHIV-1 production—and both can be experimentally engineered and controlled. Analysis demonstrates that crHIV-1 gene therapy can indefinitely reduce HIV-1 set point to levels comparable to those achieved with highly active antiretroviral therapy, provided crHIV-1 production is more efficient than HIV-1. Paradoxically, highly efficient therapeutic inhibition of HIV-1 was found to be disadvantageous. Thus, the field may benefit by shifting the search for more potent antiviral genes toward engineering optimized therapy viruses that package ultraefficiently while downregulating viral production moderately.


2012 ◽  
Vol 56 (6) ◽  
pp. 3011-3019 ◽  
Author(s):  
Joseph E. Rower ◽  
Amie Meditz ◽  
Edward M. Gardner ◽  
Kenneth Lichtenstein ◽  
Julie Predhomme ◽  
...  

ABSTRACTThe cellular pharmacology of zidovudine (ZDV) and lamivudine (3TC)in vivois not completely understood. This prospective longitudinal study investigated the relationship between HIV-1 serostatus, sex, race, and time on therapy with intracellular and plasma ZDV and 3TC concentrations. Of 20 HIV-seronegative and 23 HIV-seropositive volunteers enrolled, 16 (8 women) and 21 (5 women) completed all 12 study days, respectively. Volunteers began ZDV-3TC therapy (plus a third active drug in HIV-seropositive volunteers), and steady-state concentrations (Css) were determined after days 1, 3, 7, and 12. A repeated-measures mixed model was utilized. HIV-seronegative status was associated with 22% (95% confidence interval [CI], 0%, 50%) and 37% (15%, 67%) higherCssestimates compared to those of HIV-seropositive individuals for intracellular ZDV-TP and 3TC-TP levels, respectively. African-Americans had 36% (8%, 72%) higher ZDV-TP estimates than non-African-Americans. Sex was not associated with ZDV-TP or 3TC-TP (P> 0.19). Women had 36% (4%, 78%) higher plasma ZDV, but the effect was lessened when normalized by lean body weight (5% [−19%, 38%];P= 0.68). Plasma 3TC was 19% (0%, 41%) higher in HIV-seropositive volunteers and 22% (0%, 48%) higher in African American volunteers, but these effects were not significant when corrected for creatinine clearance (7% [−9%, 20%] and −5% [−26%, 12%] for HIV serostatus and race, respectively;P> 0.35). These results suggest that HIV-seropositive status decreases and African American race elevates the cellular triphosphates of ZDV and 3TC. This information extends knowledge of ZDV and 3TC cellular pharmacologyin vivoand provides new leads for future cellular pharmacology studies aimed at optimizing HIV prevention/treatment with these agents.


2008 ◽  
Vol 83 (5) ◽  
pp. 2349-2356 ◽  
Author(s):  
W. David Wick ◽  
Peter B. Gilbert ◽  
Otto O. Yang

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Nef is a multifunctional protein that confers an ability to evade killing by cytotoxic T lymphocytes (CTLs) as well as other advantages to the virus in vivo. Here we exploited mathematical modeling and related statistical methods to estimate the impact of Nef activity on viral replication in vivo in relation to CTLs. Our results indicate that downregulation of major histocompatibility complex class I (MHC-I) A and B by wild-type Nef confers an advantage to the virus of about 82% in decreased CTL killing efficiency on average, meaning that abolishing the MHC-I downregulation function of Nef would increase killing by more than fivefold. We incorporated this estimate, as well as prior estimates of replicative enhancement by Nef, into a previously published model of HIV-1 and CTLs in vivo (W. D. Wick, O. O. Yang, L. Corey, and S. G. Self, J. Virol. 79:13579-13586, 2005), generalized to permit CTL recognition of multiple epitopes. A sequence database analysis revealed that 92.9% of HIV-1 epitopes are A or B restricted, and a previous study found an average of about 19 epitopes recognized (M. M. Addo et al., J. Virol. 77:2081-2092, 2003). We combined these estimates in the model in order to predict the impact of inhibiting Nef function in the general (chronically infected) population by a drug. The predicted impact on viral load ranged from negligible to 2.4 orders of magnitude, depending on the effects of the drug and the CTL dynamical scenario assumed. We conclude that inhibiting Nef could make a substantial reduction in disease burden, lengthening the time before the necessity of undertaking combination therapy with other antiretroviral drugs.


2001 ◽  
Vol 14 (4) ◽  
pp. 753-777 ◽  
Author(s):  
Stephen D. Lawn ◽  
Salvatore T. Butera ◽  
Thomas M. Folks

SUMMARY The life cycle of human immunodeficiency virus type 1 (HIV-1) is intricately related to the activation state of the host cells supporting viral replication. Although cellular activation is essential to mount an effective host immune response to invading pathogens, paradoxically the marked systemic immune activation that accompanies HIV-1 infection in vivo may play an important role in sustaining phenomenal rates of HIV-1 replication in infected persons. Moreover, by inducing CD4+ cell loss by apoptosis, immune activation may further be central to the increased rate of CD4+ cell turnover and eventual development of CD4+ lymphocytopenia. In addition to HIV-1-induced immune activation, exogenous immune stimuli such as opportunistic infections may further impact the rate of HIV-1 replication systemically or at localized anatomical sites. Such stimuli may also lead to genotypic and phenotypic changes in the virus pool. Together, these various immunological effects on the biology of HIV-1 may potentially enhance disease progression in HIV-infected persons and may ultimately outweigh the beneficial aspects of antiviral immune responses. This may be particularly important for those living in developing countries, where there is little or no access to antiretroviral drugs and where frequent exposure to pathogenic organisms sustains a chronically heightened state of immune activation. Moreover, immune activation associated with sexually transmitted diseases, chorioamnionitis, and mastitis may have important local effects on HIV-1 replication that may increase the risk of sexual or mother-to-child transmission of HIV-1. The aim of this paper is to provide a broad review of the interrelationship between immune activation and the immunopathogenesis, transmission, progression, and treatment of HIV-1 infection in vivo.


2000 ◽  
Vol 74 (20) ◽  
pp. 9532-9539 ◽  
Author(s):  
Louis M. Mansky ◽  
Lisa C. Bernard

ABSTRACT How antiretroviral drug resistance influences human immunodeficiency virus type 1 (HIV-1) evolution is not clear. This study tested the hypothesis that antiretroviral drugs such as 3′-azido-3′-deoxythymidine (AZT) can influence the in vivo mutation rate of HIV-1. It was observed that AZT can increase the rate of HIV-1 mutation by a factor of 7 in a single round of replication. In addition, (−)2′,3′-dideoxy-3′-thiacytidine (3TC) was also found to increase the mutation rate of HIV-1 by a factor of 3. It was also found that HIV-1 drug-resistant reverse transcriptase (RT) variants can influence the in vivo mutation rate. Replication of HIV-1 with AZT-resistant RTs increased the mutation rate by as much as a factor of 3, while replication of HIV-1 with a 3TC-resistant RT (M184V) had no significant effect on the mutation rate. It was observed that only high-level, AZT-resistant RT variants could influence the in vivo mutation rate (i.e., M41L/T215Y and M41L/D67N/K70R/T215Y). In total, these observations indicate that both antiretroviral drugs and drug resistance mutations can influence the in vivo mutation rate of HIV-1.


Sexual Health ◽  
2009 ◽  
Vol 6 (4) ◽  
pp. 305 ◽  
Author(s):  
Anna C. Hearps ◽  
Vicki Greengrass ◽  
Jennifer Hoy ◽  
Suzanne M. Crowe

Background: The integrase inhibitors (e.g. Raltegravir) are a new class of antiretroviral drugs that have recently become available for the treatment of patients with multi-drug resistant HIV-1 within Australia. The emergence of mutations that confer resistance to the integrase inhibitors has been observed in vivo; however, no commercial genotyping assay is currently available to screen for resistance to these drugs. Methods: The HIV-1 integrase gene was amplified from plasma-derived HIV-1 viral RNA via reverse transcription-polymerase chain reaction and genotype determined via population DNA sequencing. Drug resistance mutations and polymorphisms were detected using the Stanford University online HIV database. Assay sensitivity and reproducibility were determined using clinical and laboratory-derived samples. Results: Our in-house assay was capable of genotyping the integrase gene from all samples tested (n = 30) of HIV-1 subtypes B, C, D, F, CFR01_AE and CRF02_AG and can amplify the integrase region from plasma samples containing as few as 50 HIV RNA copies/mL. The assay is highly reproducible (average nucleotide concordance = 99.6%, n = 4) and is capable of detecting resistance-associated mutations. Conclusions:This assay is suitable for routine drug resistance screening of plasma samples from HIV-infected patients receiving integrase inhibitor antiretroviral drugs and also serves as a useful research tool.


Sign in / Sign up

Export Citation Format

Share Document