scholarly journals The Roles of HIV-1 Proteins and Antiretroviral Drug Therapy in HIV-1-Associated Endothelial Dysfunction

2008 ◽  
Vol 56 (5) ◽  
pp. 752-769 ◽  
Author(s):  
Erik R. Kline ◽  
Roy L. Sutliff

Since the emergence of highly active antiretroviral therapy (HAART), human immunodeficiency virus-1 (HIV-1)-infected patients have demonstrated dramatic decreases in viral burden and opportunistic infections, and an overall increase in life expectancy. Despite these positive HAART-associated outcomes, it has become increasingly clear that HIV-1 patients have an enhanced risk of developing cardiovascular disease over time. Clinical studies are instrumental in our understanding of vascular dysfunction in the context of HIV-1 infection. However, most clinical studies often do not distinguish whether HIV-1 proteins, HAART, or a combination of these 2 factors cause cardiovascular complications. This review seeks to address the roles of both HIV-1 proteins and antiretroviral drugs in the development of endothelial dysfunction because endothelial dysfunction is the hallmark initial step of many cardiovascular diseases. We analyze recentin vitroandin vivostudies examining endothelial toxicity in response to HIV-1 proteins or in response to the various classes of antiretroviral drugs. Furthermore, we discuss the multiple mechanisms by which HIV-1 proteins and HAART injure the vascular endothelium in HIV-1 patients. By understanding the molecular mechanisms of HIV-1 protein- and antiretroviral-induced cardiovascular disease, we may ultimately improve the quality of life of HIV-1 patients through better drug design and the discovery of new pharmacological targets.

2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Said A. Hassounah ◽  
Ahmad Alikhani ◽  
Maureen Oliveira ◽  
Simrat Bharaj ◽  
Ruxandra-Ilinca Ibanescu ◽  
...  

ABSTRACT Animal models are essential to study novel antiretroviral drugs, resistance-associated mutations (RAMs), and treatment strategies. Bictegravir (BIC) is a novel potent integrase strand transfer inhibitor (INSTI) that has shown promising results against HIV-1 infection in vitro and in vivo and against clinical isolates with resistance against INSTIs. BIC has a higher genetic barrier to the development of resistance than two clinically approved INSTIs, termed raltegravir and elvitegravir. Another clinically approved INSTI, dolutegravir (DTG) also possesses a high genetic barrier to resistance, while a fourth compound, termed cabotegravir (CAB), is currently in late phases of clinical development. Here we report the susceptibilities of simian immunodeficiency virus (SIV) and HIV-1 integrase (IN) mutants containing various RAMs to BIC, CAB, and DTG. BIC potently inhibited SIV and HIV-1 in single cycle infection with 50% effective concentrations (EC50s) in the low nM range. In single cycle SIV infections, none of the E92Q, T97A, Y143R, or N155H substitutions had a significant effect on susceptibility to BIC (≤4-fold increase in EC50), whereas G118R and R263K conferred ∼14-fold and ∼6-fold increases in EC50, respectively. In both single and multiple rounds of HIV-1 infections, BIC remained active against the Y143R, N155H, R263K, R263K/M50I, and R263K/E138K mutants (≤4-fold increase in EC50). In multiple rounds of infection, the G140S/Q148H combination of substitutions decreased HIV-1 susceptibility to BIC 4.8-fold compared to 16.8- and 7.4-fold for CAB and DTG, respectively. BIC possesses an excellent resistance profile in regard to HIV and SIV and could be useful in nonhuman primate models of HIV infection.


2020 ◽  
Author(s):  
Ying Jiang ◽  
Hong Zhu ◽  
Hong Chen ◽  
Meng-Meng Yang ◽  
Yi-Chen Yu ◽  
...  

Abstract Background: The cardiovascular dysfunction in children born after in vitro fertilization (IVF) has been of great concern, in our study, we aim to explore potential molecular mechanisms for such long-term outcomes.Methods:Real-time qPCR was used to test long non-coding RNA MEG3 and endothelium-derived factors such as endothelial nitric oxide synthase (eNOS), endothelin-1(ET1), and vascular endothelial growth factor (VEGF). ELISA was used to determinate levels of the first and second oxidation products of NO (nitrite, nitrate), ET1 and VEGF. Primary HUVECs collected after caesarean section were treated with different estradiol concentrations in vitro. Additionally, knockdown of MEG3 on HUVEC provided further evidence between MEG3 expression and alteration of NO, ET1, VEGF. Then, by using pyrosequencing, we uncovered the methylation status of the MEG3 region.Results: We found that the expression level of MEG3 was higher in human umbilical vein endothelial cells (HUVECs) of IVF offspring than that in spontaneously born offspring. Furthermore, we found decreased expression of eNOS and VEGF along with elevated expression of ET1 in HUVECs from IVF offspring compared to spontaneously born offspring, accompanied by lower secretion of nitrite, VEGF, and higher secretion of ET1 in the umbilical cord serum of IVF offspring. We confirmed the results from in vivo experiments by demonstrating that high estradiol intrauterine environments lead to abnormal expression of MEG3 and endothelium derived factors. Meanwhile, silencing MEG3 expression decreased ET1 expression, and increased nitrite, nitrate, and VEGF secretion, which could account for the effects we observed in vivo. With pyrosequencing technology, we found that elevated expression of MEG3 in IVF offspring derived HUVECs was the result of hypomethylation of the MEG3 promoter.Conclusions: Our results demonstrated that increased expression of MEG3 in IVF-born HUVECs, accompanied by lower secretion of eNOS and VEGF along with higher secretion of ET1, which is closely related with endothelial dysfunction, together provide a potential mechanism addressing high risk of hypertension in IVF offspring.


Author(s):  
K. Kallmeyer ◽  
M. A. Ryder ◽  
M. S. Pepper

AbstractThe introduction of antiretroviral therapy (ART) and highly active antiretroviral therapy (HAART) has transformed human immunodeficiency virus (HIV)-1 into a chronic, well-managed disease. However, these therapies do not eliminate all infected cells from the body despite suppressing viral load. Viral rebound is largely due to the presence of cellular reservoirs which support long-term persistence of HIV-1. A thorough understanding of the HIV-1 reservoir will facilitate the development of new strategies leading to its detection, reduction, and elimination, ultimately leading to curative therapies for HIV-1. Although immune cells derived from lymphoid and myeloid progenitors have been thoroughly studied as HIV-1 reservoirs, few studies have examined whether mesenchymal stromal/stem cells (MSCs) can assume this function. In this review, we evaluate published studies which have assessed whether MSCs contribute to the HIV-1 reservoir. MSCs have been found to express the receptors and co-receptors required for HIV-1 entry, albeit at levels of expression and receptor localisation that vary considerably between studies. Exposure to HIV-1 and HIV-1 proteins alters MSC properties in vitro, including their proliferation capacity and differentiation potential. However, in vitro and in vivo experiments investigating whether MSCs can become infected with and harbour latent integrated proviral DNA are lacking. In conclusion, MSCs appear to have the potential to contribute to the HIV-1 reservoir. However, further studies are needed using techniques such as those used to prove that cluster of differentiation (CD)4+ T cells constitute an HIV-1 reservoir before a reservoir function can definitively be ascribed to MSCs. Graphical abstract MSCs may contribute to HIV-1 persistence in vivo in the vasculature, adipose tissue, and bone marrow by being a reservoir for latent HIV-1. To harbour latent HIV-1, MSCs must express HIV-1 entry markers, and show evidence of productive or latent HIV-1 infection. The effect of HIV-1 or HIV-1 proteins on MSC properties may also be indicative of HIV-1 infection.


2019 ◽  
Vol 94 (5) ◽  
Author(s):  
Iga Kucharska ◽  
Pengfei Ding ◽  
Kaneil K. Zadrozny ◽  
Robert A. Dick ◽  
Michael F. Summers ◽  
...  

ABSTRACT The assembly of an orthoretrovirus such as HIV-1 requires the coordinated functioning of multiple biochemical activities of the viral Gag protein. These activities include membrane targeting, lattice formation, packaging of the RNA genome, and recruitment of cellular cofactors that modulate assembly. In most previous studies, these Gag activities have been investigated individually, which provided somewhat limited insight into how they functionally integrate during the assembly process. Here, we report the development of a biochemical reconstitution system that allowed us to investigate how Gag lattice formation, RNA binding, and the assembly cofactor inositol hexakisphosphate (IP6) synergize to generate immature virus particles in vitro. The results identify an important rate-limiting step in assembly and reveal new insights into how RNA and IP6 promote immature Gag lattice formation. The immature virus-like particles can be converted into mature capsid-like particles by the simple addition of viral protease, suggesting that it is possible in principle to fully biochemically reconstitute the sequential processes of HIV-1 assembly and maturation from purified components. IMPORTANCE Assembly and maturation are essential steps in the replication of orthoretroviruses such as HIV-1 and are proven therapeutic targets. These processes require the coordinated functioning of the viral Gag protein’s multiple biochemical activities. We describe here the development of an experimental system that allows an integrative analysis of how Gag’s multiple functionalities cooperate to generate a retrovirus particle. Our current studies help to illuminate how Gag synergizes the formation of the virus compartment with RNA binding and how these activities are modulated by the small molecule IP6. Further development and use of this system should lead to a more comprehensive understanding of the molecular mechanisms of HIV-1 assembly and maturation and may provide new insights for the development of antiretroviral drugs.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Ning Li ◽  
Ling Li ◽  
Haiming Wu ◽  
Heng Zhou

Geniposide, an iridoid glucoside, is a major component in the fruit of Gardenia jasminoides Ellis (Gardenia fruits). Geniposide has been experimentally proved to possess multiple pharmacological actions involving antioxidative stress, anti-inflammatory, antiapoptosis, antiangiogenesis, antiendoplasmic reticulum stress (ERS), etc. In vitro and in vivo studies have further identified the value of geniposide in a spectrum of preclinical models of diabetes mellitus (DM) and cardiovascular disorders. The antioxidative property of geniposide should be attributed to the result of either the inhibition of numerous pathological processes or the activation of various proteins associated with cell survival or a combination of both. In this review, we will summarize the available knowledge on the antioxidative property and protective effects of geniposide in DM and cardiovascular disease in the literature and discuss antioxidant mechanisms as well as its potential applications in clinic.


2012 ◽  
Vol 56 (8) ◽  
pp. 4320-4330 ◽  
Author(s):  
Milan Kožíšek ◽  
Sandra Henke ◽  
Klára Grantz Šašková ◽  
Graeme Brendon Jacobs ◽  
Anita Schuch ◽  
...  

ABSTRACTDuring the last few decades, the treatment of HIV-infected patients by highly active antiretroviral therapy, including protease inhibitors (PIs), has become standard. Here, we present results of analysis of a patient-derived, multiresistant HIV-1 CRF02_AG recombinant strain with a highly mutated protease (PR) coding sequence, where up to 19 coding mutations have accumulated in the PR. The results of biochemical analysisin vitroshowed that the patient-derived PR is highly resistant to most of the currently used PIs and that it also exhibits very poor catalytic activity. Determination of the crystal structure revealed prominent changes in the flap elbow region and S1/S1′ active site subsites. While viral loads in the patient were found to be high, the insertion of the patient-derived PR into a HIV-1 subtype B backbone resulted in reduction of infectivity by 3 orders of magnitude. Fitness compensation was not achieved by elevated polymerase (Pol) expression, but the introduction of patient-derivedgagandpolsequences in a CRF02_AG backbone rescued viral infectivity to near wild-type (wt) levels. The mutations that accumulated in the vicinity of the processing sites spanning the p2/NC, NC/p1, and p6pol/PR proteins lead to much more efficient hydrolysis of corresponding peptides by patient-derived PR in comparison to the wt enzyme. This indicates a very efficient coevolution of enzyme and substrate maintaining high viral loadsin vivounder constant drug pressure.


2013 ◽  
Vol 57 (11) ◽  
pp. 5320-5329 ◽  
Author(s):  
Steffen Wildum ◽  
Daniela Paulsen ◽  
Kai Thede ◽  
Helga Ruebsamen-Schaeff ◽  
Holger Zimmermann

ABSTRACTNonnucleoside reverse transcriptase inhibitors (NNRTIs) are important and frequently used elements of highly active antiretroviral therapy (HAART) for the treatment of human immunodeficiency virus type 1 (HIV-1) infection. However, the development of drug resistance, as well as the side effects of existing drugs, defines a medical need for novel NNRTIs with excellent tolerability, improved activity against NNRTI-resistant viruses, and a low barrier to resistance. Within the chemical class of diarylpyrazole-[imidazolidinone]-carboxamides, AIC292 was identified as a promising novel HIV-1 NNRTI and has successfully completed single-dose clinical phase I studies. Here, we report on the antiviral activity of AIC292, evaluatedin vitroagainst wild-type and NNRTI-resistant HIV-1 isolates andin vivousing an engineered mouse xenograft model. AIC292 inhibited wild-type HIV-1 laboratory strains at low nanomolar concentrations, was well tolerated in different cell lines, and showed excellent selectivity in a lead profiling screen. In addition, activity of AIC292 could be demonstrated against a broad panel of wild-type HIV-1 group M and group O clinical isolates. AIC292 also retained activity against viruses harboring NNRTI resistance-associated mutations (RAMs), including the most prevalent variants, K103N, Y181C, and G190A. Interestingly, viruses bearing the L100I RAM were hypersusceptible to AIC292. Two-drug combination assays showed no antagonistic interactions between AIC292 and representative marketed HIV drugs with regard to antiviral activity. Furthermore, AIC292 displayed potent antiviralin vivoefficacy in a mouse xenograft model when applied once daily. Taken together, these data show that AIC292 represents a molecule with the antiviral properties of a novel NNRTI for the treatment of HIV-1 infection.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ping An ◽  
Efe Sezgin ◽  
Gregory D. Kirk ◽  
Priya Duggal ◽  
Elizabeth Binns-Roemer ◽  
...  

AbstractApolipoprotein L1 (APOL1), an innate immune factor against African trypanosoma brucei, inhibits HIV-1 in vitro. The impact of APOL1 G1-G2 variants on HIV-1-associated opportunistic infections (OIs) is unknown. Here, we report findings from a metaanalysis of four HIV/AIDS prospective cohorts (ALIVE, LSOCA, MACS, and WIHS) including 2066 African American participants. Using a global test combining all four cohorts, carriage of two APOL1 variant alleles is associated with a 50% reduction in odds of OI (combined OR 0.50, 95% CI 0.33-0.76). Subgroup analysis of OI etiological categories (viral, parasitic, fungal and Mycobacterial) suggests the possibility of specific protection from fungal infections (OR 0.54. 95% CI 0.32-0.93; PBonferroni corrected = 0.08). We observe an association of APOL1 variant alleles with host protection against OI in HIV-positive individuals. The study suggests a broader role of APOL1 variant alleles in innate immunity in vivo.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1207
Author(s):  
Fabiola Ciccosanti ◽  
Marco Corazzari ◽  
Rita Casetti ◽  
Alessandra Amendola ◽  
Diletta Collalto ◽  
...  

Autophagy is a lysosomal-dependent degradative mechanism essential in maintaining cellular homeostasis, but it is also considered an ancient form of innate eukaryotic fighting against invading microorganisms. Mounting evidence has shown that HIV-1 is a critical target of autophagy that plays a role in HIV-1 replication and disease progression. In a special subset of HIV-1-infected patients that spontaneously and durably maintain extremely low viral replication, namely, long-term nonprogressors (LTNP), the resistance to HIV-1-induced pathogenesis is accompanied, in vivo, by a significant increase in the autophagic activity in peripheral blood mononuclear cells. Recently, a new player in the battle of autophagy against HIV-1 has been identified, namely, tripartite motif protein 5α (TRIM5α). In vitro data demonstrated that TRIM5α directly recognizes HIV-1 and targets it for autophagic destruction, thus protecting cells against HIV-1 infection. In this paper, we analyzed the involvement of this factor in the control of HIV-1 infection through autophagy, in vivo, in LTNP. The results obtained showed significantly higher levels of TRIM5α expression in cells from LTNP with respect to HIV-1-infected normal progressor patients. Interestingly, the colocalization of TRIM5α and HIV-1 proteins in autophagic vacuoles in LTNP cells suggested the participation of TRIM5α in the autophagy containment of HIV-1 in LTNP. Altogether, our results point to a protective role of TRIM5α in the successful control of the chronic viral infection in HIV-1-controllers through the autophagy mechanism. In our opinion, these findings could be relevant in fighting against HIV-1 disease, because autophagy inducers might be employed in combination with antiretroviral drugs.


Sign in / Sign up

Export Citation Format

Share Document