Collision Recognition and Direction Changes Using Fuzzy Logic for Small Scale Fish Robots by Acceleration Sensor Data

Author(s):  
Seung Y. Na ◽  
Daejung Shin ◽  
Jin Y. Kim ◽  
Su-Il Choi
Author(s):  
Serdar Üşenmez ◽  
Sinan Ekinci ◽  
Oğuz Uzol ◽  
İlkay Yavrucuk

Having a small-scale turbojet engine operate at a desired speed with minimum steady state error, while maintaining good transient response is crucial in many applications, such as UAVs, and requires precise control of the fuel flow. In this paper, first the mathematical model of a Small-Scale Turbojet Engine (SSTE) is obtained using system identification tests, and then based on this model, a classical PI controller is designed. Afterwards, to improve on the transient response and steady state performance of this classical controller, a Fuzzy Logic Controller (FLC) is designed. The design process for the FLC employs logical deduction based on knowledge of the engine behavior and iterative tuning in the light of software- and hardware-in-the-loop simulations. The classical and fuzzy logic controllers are both implemented on an in-house, embedded Electronic Control Unit (ECU) running in real time. This ECU is an integrated device carrying a microcontroller based board, a fuel pump, fuel line valves, speed sensor and exhaust gas temperature sensor inputs, and starter motor and glow plug driver outputs. It mainly functions by receiving a speed reference value via its serial communication interface. Based on this reference, a voltage is calculated and applied to the fuel pump in order to regulate the fuel flow into the engine, thereby bringing the engine speed to the desired value. Pre-defined procedures for starting and stopping the engine are also automatically performed by the ECU. Further, it connects to a computer running an in-house comprehensive Graphical User Interface (GUI) software for operating, monitoring, configuration and diagnostics purposes. The designed controllers are used to drive a generic SSTE. Reference inputs consisting of step, ramp and chirp profiles are applied to the controllers. The engine response using both controllers are recorded and inspected. The results show that the FLC exhibits a comparable performance to the classical controller, with possible opportunities to improve this performance.


2017 ◽  
Vol 128 (10) ◽  
pp. e388
Author(s):  
R. Leenings ◽  
C. Glatz ◽  
A. Heidbreder ◽  
M. Boentert ◽  
G. Pipa ◽  
...  

2021 ◽  
Author(s):  
Adrian Wenzel ◽  
Jia Chen ◽  
Florian Dietrich ◽  
Sebastian T. Thekkekara ◽  
Daniel Zollitsch ◽  
...  

<p>Modeling urban air pollutants is a challenging task not only due to the complicated, small-scale topography but also due to the complex chemical processes within the chemical regime of a city. Nitrogen oxides (NOx), particulate matter (PM) and other tracer gases, e.g. formaldehyde, hold information about which chemical regime is present in a city. As we are going to test and apply chemical models for urban pollution – especially with respect to spatial and temporally variability – measurement data with high spatial and temporal resolution are critical.</p><p>Since governmental monitoring stations of air pollutants such as PM, NOx, ozone (O<sub>3</sub>) or carbon monoxide (CO) are large and costly, they are usually only sparsely distributed throughout a city. Hence, the official monitoring sites are not sufficient to investigate whether small-scale variability and its integrated effects are captured well by models. Smart networks consisting of small low-cost air pollutant sensors have the ability to provide the required grid density and are therefore the tool of choice when it comes to setting up or validating urban modeling frameworks. Such sensor networks have been established and run by several groups, achieving spatial and temporal high-resolution concentration maps [1, 2].</p><p>After having conducted a measurement campaign in 2016 to create a high-resolution NO<sub>2</sub> concentration map for Munich [3], we are currently setting up a low-cost sensor network to measure NOx, PM, O<sub>3</sub> and CO concentrations as well as meteorological parameters [4]. The sensors are stand-alone, so that they do not demand mains supply, which gives us a high flexibility in their deployment. Validating air quality models not only requires dense but also high-accuracy measurements. Therefore, we will calibrate our sensor nodes on a weekly basis using a mobile reference instrument and apply the gathered sensor data to a Machine Learning model of the sensor nodes. This will help minimize the often occurring drawbacks of low-cost sensors such as sensor drift, environmental influences and sensor cross sensitivities.</p><p> </p><p>[1] Bigi, A., Mueller, M., Grange, S. K., Ghermandi, G., and Hueglin, C.: Performance of NO, NO2 low cost sensors and three calibration approaches within a real world application, Atmos. Meas. Tech., 11, 3717–3735, https://doi.org/10.5194/amt-11-3717-2018, 2018</p><p>[2] Kim, J., Shusterman, A. A., Lieschke, K. J., Newman, C., and Cohen, R. C.: The BErkeley Atmospheric CO2 Observation Network: field calibration and evaluation of low-cost air quality sensors, Atmos. Meas. Tech., 11, 1937–1946, https://doi.org/10.5194/amt-11-1937-2018, 2018</p><p>[3] Zhu, Y., Chen, J., Bi, X., Kuhlmann, G., Chan, K. L., Dietrich, F., Brunner, D., Ye, S., and Wenig, M.: Spatial and temporal representativeness of point measurements for nitrogen dioxide pollution levels in cities, Atmos. Chem. Phys., 20, 13241–13251, https://doi.org/10.5194/acp-20-13241-2020, 2020</p><p>[4] Zollitsch, D., Chen, J., Dietrich, F., Voggenreiter, B., Setili, L., and Wenig, M.: Low-Cost Air Quality Sensor Network in Munich, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19276, https://doi.org/10.5194/egusphere-egu2020-19276, 2020</p>


2021 ◽  
Author(s):  
Nadja den Besten ◽  
Susan Steele-Dunne ◽  
Richard de Jeu ◽  
Pieter van der Zaag

<p>Satellite sensors have been used widely to determine water shortages to detect crop stress, with special emphasis on water stress. However, stress resulting from waterlogging has so far received little attention. This is surprising because approximately twenty percent of the global agricultural land suffers from the consequences of waterlogging and secondary soil salinization. While irrigation is expected to increase productivity, excess water can hamper the crop growth and decrease water use efficiency.</p><p>Traditionally, satellite driven water accounting for irrigation assistance uses optical and/or thermal sensors that can detect crop stress. The observed crop stress is often interpreted as water stress, whereby stress resulting from waterlogging cannot be distinguished. We hypothesize that a multi-sensor approach is required to distinguish waterlogging from water shortage, by including microwave observations that can determine the soil moisture status. However, localizing a small-scale phenomena as waterlogging with multi-sensor data with different resolutions is a major challenge.</p><p>In our research we focus on an irrigated sugarcane plantation along the river Incomati in Xinavane, Mozambique. Waterlogging is a common issue in the estate and is threatening productivity. We assess and combine optical and passive microwave data for a large drought (2016) and flooding event (2012) to look at the possibility of downscaling the data for detection of waterlogging. We find that optical indices are able to localize waterlogged areas. Additionally, the built up of the drought event and retreat of the flooding event are clearly visible in the brightness temperature in different frequencies. We demonstrate a procedure to combine brightness temperature with optical data to detect waterlogging at a higher spatial resolution. </p><p>The results show that a combination of optical and passive microwave data can detect regions within the sugarcane plantation of waterlogging. However, high resolution topographic data is required to enhance the detection of waterlogging to finer scales. </p>


Author(s):  
Mohd Fatimie Irzaq bin Khamis ◽  
Zuhairi bin Baharudin ◽  
Nor Hisham bin Hamid ◽  
Mohd Faris bin Abdullah ◽  
Siti Sarah Md Yunus
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document