scholarly journals Dedicated Hardware for Real-Time Computation of Second-Order Statistical Features for High Resolution Images

Author(s):  
Dimitris Bariamis ◽  
Dimitris K. Iakovidis ◽  
Dimitris Maroulis
Author(s):  
Kenneth Krieg ◽  
Richard Qi ◽  
Douglas Thomson ◽  
Greg Bridges

Abstract A contact probing system for surface imaging and real-time signal measurement of deep sub-micron integrated circuits is discussed. The probe fits on a standard probe-station and utilizes a conductive atomic force microscope tip to rapidly measure the surface topography and acquire real-time highfrequency signals from features as small as 0.18 micron. The micromachined probe structure minimizes parasitic coupling and the probe achieves a bandwidth greater than 3 GHz, with a capacitive loading of less than 120 fF. High-resolution images of submicron structures and waveforms acquired from high-speed devices are presented.


2014 ◽  
Vol 13 (4) ◽  
pp. 685-702 ◽  
Author(s):  
Dana Forsthoefel Fitzgerald ◽  
D. Scott Wills ◽  
Linda M. Wills

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3591 ◽  
Author(s):  
Haidi Zhu ◽  
Haoran Wei ◽  
Baoqing Li ◽  
Xiaobing Yuan ◽  
Nasser Kehtarnavaz

This paper addresses real-time moving object detection with high accuracy in high-resolution video frames. A previously developed framework for moving object detection is modified to enable real-time processing of high-resolution images. First, a computationally efficient method is employed, which detects moving regions on a resized image while maintaining moving regions on the original image with mapping coordinates. Second, a light backbone deep neural network in place of a more complex one is utilized. Third, the focal loss function is employed to alleviate the imbalance between positive and negative samples. The results of the extensive experimentations conducted indicate that the modified framework developed in this paper achieves a processing rate of 21 frames per second with 86.15% accuracy on the dataset SimitMovingDataset, which contains high-resolution images of the size 1920 × 1080.


Author(s):  
Hengshuang Zhao ◽  
Xiaojuan Qi ◽  
Xiaoyong Shen ◽  
Jianping Shi ◽  
Jiaya Jia

2021 ◽  
Vol 11 (5) ◽  
pp. 2105
Author(s):  
Vladan Papić ◽  
Petar Šolić ◽  
Ante Milan ◽  
Sven Gotovac ◽  
Miljenko Polić

Search and rescue (SAR) missions comprise search for, and provision of aid to people who are in distress or imminent danger. Providing the best possible input for the planners and search teams, up-to-date information about the terrain is of essential importance because every additional hour needed to search a person decreases probability of success. Therefore, availability of aerial images and updated terrain maps as a basis for planning and monitoring SAR missions in real-time is very important for rescuers. In this paper, we present a system for transmission of high-resolution images from an unmanned aerial vehicle (UAV) to the ground station (GS). We define and calculate data rate and transmission distance requirements between the UAV and GS in a mission scenario. Five tests were designed and carried out to confirm the viability of the proposed system architecture and modules. Test results present throughput measurements for various UAV and GS distances, antenna heights and UAV antenna yaw angles. Experimental results from the series of conducted outdoor tests show that the proposed solution using two pMDDL2450 datalinks at 2.4 GHz and a directional antenna on the receiving side can be used for a real-time transmission of high-resolution images acquired with a camera on a UAV. Achieved throughput at a UAV-GS distance of 5 km was 1.4 MB/s (11.2 Mbps). The limitations and possible improvements of the proposed system as well as future work are also discussed.


Sign in / Sign up

Export Citation Format

Share Document