Porous Networks Through Colloidal Templates

Author(s):  
Qin Li ◽  
Markus Retsch ◽  
Jianjun Wang ◽  
Wolfgang Knoll ◽  
Ulrich Jonas
Keyword(s):  
2021 ◽  
Author(s):  
Bahareh ameri ◽  
Akbar Mohammadi Zardkhoshoui ◽  
Saied Saeed Hosseiny Davarani

Metal-organic frameworks (MOFs) derived nanoarchitectures have special features, such as high surface area (SA), abundant active sites, exclusive porous networks, and remarkable supercapacitive performance when compared to traditional nanoarchitectures. Herein,...


ChemistryOpen ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 697-712
Author(s):  
Daniel Loof ◽  
Oliver Thüringer ◽  
Marco Schowalter ◽  
Christoph Mahr ◽  
Anmona Shabnam Pranti ◽  
...  

2021 ◽  
Vol 5 (19) ◽  
pp. 4944-4954
Author(s):  
Li-Li Yu ◽  
Wei-Ling Xu ◽  
Jian-Guo Zhang ◽  
Shuang Li ◽  
Rong-Bing Li ◽  
...  

Template-free fabrication of nanowires self-assembling into nanospheres and crosslinking into 3D hierarchical porous β-MnO2 networks with good supercapacitive performance over a broad temperature range.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1473 ◽  
Author(s):  
Ioana A. Duceac ◽  
Liliana Verestiuc ◽  
Cristina D. Dimitriu ◽  
Vasilica Maier ◽  
Sergiu Coseri

The dynamic evolution of materials with medical applications, particularly for drug delivery and wound dressing applications, gives impetus to design new proposed materials, among which, hydrogels represent a promising, powerful tool. In this context, multifunctional hydrogels have been obtained from chemically modified chitosan and acrylic polymers as cross-linkers, followed by subsequent conjugation with arginine. The hydrogels were finely tuned considering the variation of the synthetic monomer and the preparation conditions. The advantage of using both natural and synthetic polymers allowed porous networks with superabsorbent behavior, associated with a non-Fickian swelling mechanism. The in vitro release profiles for ibuprofen and the corresponding kinetics were studied, and the results revealed a swelling-controlled release. The biodegradability studies in the presence of lysozyme, along with the hemostatic evaluation and the induced fibroblast and stem cell proliferation, have shown that the prepared hydrogels exhibit characteristics that make them suitable for local drug delivery and wound dressing.


2016 ◽  
Vol 12 ◽  
pp. 2274-2279 ◽  
Author(s):  
Damien Thirion ◽  
Joo S Lee ◽  
Ercan Özdemir ◽  
Cafer T Yavuz

Effective carbon dioxide (CO2) capture requires solid, porous sorbents with chemically and thermally stable frameworks. Herein, we report two new carbon–carbon bonded porous networks that were synthesized through metal-free Knoevenagel nitrile–aldol condensation, namely the covalent organic polymer, COP-156 and 157. COP-156, due to high specific surface area (650 m2/g) and easily interchangeable nitrile groups, was modified post-synthetically into free amine- or amidoxime-containing networks. The modified COP-156-amine showed fast and increased CO2 uptake under simulated moist flue gas conditions compared to the starting network and usual industrial CO2 solvents, reaching up to 7.8 wt % uptake at 40 °C.


Sign in / Sign up

Export Citation Format

Share Document