scholarly journals Robust C–C bonded porous networks with chemically designed functionalities for improved CO2 capture from flue gas

2016 ◽  
Vol 12 ◽  
pp. 2274-2279 ◽  
Author(s):  
Damien Thirion ◽  
Joo S Lee ◽  
Ercan Özdemir ◽  
Cafer T Yavuz

Effective carbon dioxide (CO2) capture requires solid, porous sorbents with chemically and thermally stable frameworks. Herein, we report two new carbon–carbon bonded porous networks that were synthesized through metal-free Knoevenagel nitrile–aldol condensation, namely the covalent organic polymer, COP-156 and 157. COP-156, due to high specific surface area (650 m2/g) and easily interchangeable nitrile groups, was modified post-synthetically into free amine- or amidoxime-containing networks. The modified COP-156-amine showed fast and increased CO2 uptake under simulated moist flue gas conditions compared to the starting network and usual industrial CO2 solvents, reaching up to 7.8 wt % uptake at 40 °C.

Author(s):  
Haiming Gu ◽  
Yunfei Gao ◽  
Sherafghan Iftikhar ◽  
Fanxing Li

Integration of carbon dioxide capture from flue gas with dry reforming of CH4 represents an attractive approach for CO2 utilization. The selection of a suitable bifunctional material serving as a...


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2889
Author(s):  
Sakpal ◽  
Kumar ◽  
Aman ◽  
Kumar

Fossil fuels are dominant as an energy source, typically producing carbon dioxide (CO2) and enhancing global climate change. The present work reports the application of low-cost tri-sodium phosphate (TSP) to capture CO2 from model flue gas (CO2 + N2) mixture, in a batch mode and fixed-bed setup. It is observed that TSP has a high CO2 capture capacity as well as high CO2 selectivity. At ambient temperature, TSP shows a maximum CO2 capture capacity of 198 mg CO2/g of TSP. Furthermore, the CO2 capture efficiency of TSP over a flue gas mixture was found to be more than 90%. Fresh and spent materials were characterized using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and Fourier transformed infrared spectroscopy (FTIR). Preliminary experiments were also conducted to evaluate the performance of regenerated TSP. The spent TSP was regenerated using sodium hydroxide (NaOH) and its recyclability was tested for three consecutive cycles. A conceptual prototype for post-combustion CO2 capture based on TSP material has also been discussed.


Author(s):  
Rosa-Hilda Chavez ◽  
Javier de J. Guadarrama ◽  
Abel Hernandez-Guerrero

Carbon dioxide capture from flue gas using amine-based CO2 capture technology requires huge amounts of energy mostly in the form of heat. The overall objective of this study is to evaluate the feasibility of obtaining the heat required for amine absorption for a particular recovery of carbon dioxide for a given a set of equipment specifications and operating conditions from the process and to develop a model that simulates the removal of CO2 using Monoethanolamine (MEA) absorption from flue gas and design a process that will minimize the energy of CO2 capture with Aspen Plus™ will be used. A very useful procedure for analyzing a process is by means of the Second Law of Thermodynamics. Thermodynamic analyses based on the concepts of irreversible entropy increase have frequently been suggested as pointers to sources of inefficiency in chemical processes.


2018 ◽  
Author(s):  
Mohit Kapoor ◽  
Pratibha Chand-Thakuri ◽  
Michael Young

Carbon-carbon bond formation by transition metal-catalyzed C–H activation has become an important strategy to fabricate new bonds in a rapid fashion. Despite the pharmacological importance of <i>ortho</i>-arylbenzylamines, however, effective <i>ortho</i>-C–C bond formation from C–H bond activation of free primary and secondary benzylamines using Pd<sup>II</sup> remains an outstanding challenge. Presented herein is a new strategy for constructing <i>ortho</i>-arylated primary and secondary benzylamines mediated by carbon dioxide (CO<sub>2</sub>). The use of CO<sub>2</sub> is critical to allowing this transformation to proceed under milder conditions than previously reported, and that are necessary to furnish free amine products that can be directly used or elaborated without the need for deprotection. In cases where diarylation is possible, a chelate effect is demonstrated to facilitate selective monoarylation.


2019 ◽  
Author(s):  
Katherine Hornbostel ◽  
Du Nguyen ◽  
William Bourcier ◽  
Jennifer Knipe ◽  
Matthew Worthington ◽  
...  
Keyword(s):  
Flue Gas ◽  

Sign in / Sign up

Export Citation Format

Share Document