Nonlinear Spectroscopy of Core and Valence Excitations Using Short X-Ray Pulses: Simulation Challenges

Author(s):  
Yu Zhang ◽  
Weijie Hua ◽  
Kochise Bennett ◽  
Shaul Mukamel
Keyword(s):  
Author(s):  
Nina Rohringer

Ultraintense X-ray free-electron laser pulses of attosecond duration can enable new nonlinear X-ray spectroscopic techniques to observe coherent electronic motion. The simplest nonlinear X-ray spectroscopic concept is based on stimulated electronic X-ray Raman scattering. We present a snapshot of recent experimental achievements, paving the way towards the goal of realizing nonlinear X-ray spectroscopy. In particular, we review the first proof-of-principle experiments, demonstrating stimulated X-ray emission and scattering in atomic gases in the soft X-ray regime and first results of stimulated hard X-ray emission spectroscopy on transition metal complexes. We critically asses the challenges that have to be overcome for future successful implementation of nonlinear coherent X-ray Raman spectroscopy. This article is part of the theme issue ‘Measurement of ultrafast electronic and structural dynamics with X-rays’.


2016 ◽  
Vol T169 ◽  
pp. 014002 ◽  
Author(s):  
Kochise Bennett ◽  
Yu Zhang ◽  
Markus Kowalewski ◽  
Weijie Hua ◽  
Shaul Mukamel
Keyword(s):  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yves Kayser ◽  
Chris Milne ◽  
Pavle Juranić ◽  
Leonardo Sala ◽  
Joanna Czapla-Masztafiak ◽  
...  

Abstract Stochastic processes are highly relevant in research fields as different as neuroscience, economy, ecology, chemistry, and fundamental physics. However, due to their intrinsic unpredictability, stochastic mechanisms are very challenging for any kind of investigations and practical applications. Here we report the deliberate use of stochastic X-ray pulses in two-dimensional spectroscopy to the simultaneous mapping of unoccupied and occupied electronic states of atoms in a regime where the opacity and transparency properties of matter are subject to the incident intensity and photon energy. A readily transferable matrix formalism is presented to extract the electronic states from a dataset measured with the monitored input from a stochastic excitation source. The presented formalism enables investigations of the response of the electronic structure to irradiation with intense X-ray pulses while the time structure of the incident pulses is preserved.


2018 ◽  
Vol 121 (8) ◽  
Author(s):  
Kenji Tamasaku ◽  
Eiji Shigemasa ◽  
Yuichi Inubushi ◽  
Ichiro Inoue ◽  
Taito Osaka ◽  
...  

1994 ◽  
Vol 144 ◽  
pp. 275-277
Author(s):  
M. Karlický ◽  
J. C. Hénoux

AbstractUsing a new ID hybrid model of the electron bombardment in flare loops, we study not only the evolution of densities, plasma velocities and temperatures in the loop, but also the temporal and spatial evolution of hard X-ray emission. In the present paper a continuous bombardment by electrons isotropically accelerated at the top of flare loop with a power-law injection distribution function is considered. The computations include the effects of the return-current that reduces significantly the depth of the chromospheric layer which is evaporated. The present modelling is made with superthermal electron parameters corresponding to the classical resistivity regime for an input energy flux of superthermal electrons of 109erg cm−2s−1. It was found that due to the electron bombardment the two chromospheric evaporation waves are generated at both feet of the loop and they propagate up to the top, where they collide and cause temporary density and hard X-ray enhancements.


1994 ◽  
Vol 144 ◽  
pp. 1-9
Author(s):  
A. H. Gabriel

The development of the physics of the solar atmosphere during the last 50 years has been greatly influenced by the increasing capability of observations made from space. Access to images and spectra of the hotter plasma in the UV, XUV and X-ray regions provided a major advance over the few coronal forbidden lines seen in the visible and enabled the cooler chromospheric and photospheric plasma to be seen in its proper perspective, as part of a total system. In this way space observations have stimulated new and important advances, not only in space but also in ground-based observations and theoretical modelling, so that today we find a well-balanced harmony between the three techniques.


1994 ◽  
Vol 144 ◽  
pp. 82
Author(s):  
E. Hildner

AbstractOver the last twenty years, orbiting coronagraphs have vastly increased the amount of observational material for the whitelight corona. Spanning almost two solar cycles, and augmented by ground-based K-coronameter, emission-line, and eclipse observations, these data allow us to assess,inter alia: the typical and atypical behavior of the corona; how the corona evolves on time scales from minutes to a decade; and (in some respects) the relation between photospheric, coronal, and interplanetary features. This talk will review recent results on these three topics. A remark or two will attempt to relate the whitelight corona between 1.5 and 6 R⊙to the corona seen at lower altitudes in soft X-rays (e.g., with Yohkoh). The whitelight emission depends only on integrated electron density independent of temperature, whereas the soft X-ray emission depends upon the integral of electron density squared times a temperature function. The properties of coronal mass ejections (CMEs) will be reviewed briefly and their relationships to other solar and interplanetary phenomena will be noted.


1988 ◽  
Vol 102 ◽  
pp. 47-50
Author(s):  
K. Masai ◽  
S. Hayakawa ◽  
F. Nagase

AbstractEmission mechanisms of the iron Kα-lines in X-ray binaries are discussed in relation with the characteristic temperature Txof continuum radiation thereof. The 6.7 keV line is ascribed to radiative recombination followed by cascades in a corona of ∼ 100 eV formed above the accretion disk. This mechanism is attained for Tx≲ 10 keV as observed for low mass X-ray binaries. The 6.4 keV line observed for binary X-ray pulsars with Tx> 10 keV is likely due to fluorescence outside the He II ionization front.


1988 ◽  
Vol 102 ◽  
pp. 357-360
Author(s):  
J.C. Gauthier ◽  
J.P. Geindre ◽  
P. Monier ◽  
C. Chenais-Popovics ◽  
N. Tragin ◽  
...  

AbstractIn order to achieve a nickel-like X ray laser scheme we need a tool to determine the parameters which characterise the high-Z plasma. The aim of this work is to study gold laser plasmas and to compare experimental results to a collisional-radiative model which describes nickel-like ions. The electronic temperature and density are measured by the emission of an aluminium tracer. They are compared to the predictions of the nickel-like model for pure gold. The results show that the density and temperature can be estimated in a pure gold plasma.


1988 ◽  
Vol 102 ◽  
pp. 339-342
Author(s):  
J.M. Laming ◽  
J.D. Silver ◽  
R. Barnsley ◽  
J. Dunn ◽  
K.D. Evans ◽  
...  

AbstractNew observations of x-ray spectra from foil-excited heavy ion beams are reported. By observing the target in a direction along the beam axis, an improvement in spectral resolution, δλ/λ, by about a factor of two is achieved, due to the reduced Doppler broadening in this geometry.


Sign in / Sign up

Export Citation Format

Share Document