Role of cAMP and cGMP Signaling in Brown Fat

Author(s):  
Laia Reverte-Salisa ◽  
Abhishek Sanyal ◽  
Alexander Pfeifer
2016 ◽  
Vol 118 (1) ◽  
pp. 173-182 ◽  
Author(s):  
Geerte Hoeke ◽  
Sander Kooijman ◽  
Mariëtte R. Boon ◽  
Patrick C.N. Rensen ◽  
Jimmy F.P. Berbée

1981 ◽  
Vol 241 (3) ◽  
pp. C134-C139 ◽  
Author(s):  
U. Sundin

Reports on a reciprocal relationship between sympathetic-nerve and experimentally induced changes in thyroid-hormone activity called into question the proposed role of thyroxine in the changes seen in the brown fat after cold adaptation. Rats reared at +30, +22, and +5 degrees C received daily injections of thyroxine (1 mg/kg). After 3 wk of treatment, the thermogenic state of the tissue was assessed by measuring the capacity of the brown fat mitochondria to bind guanosine 5'-diphosphate (GDP). GDP-inhibited mitochondrial swelling, brown adipose tissue (BAT) wet weights, and mitochondrial yields were also measured. The control animals showed a linear increase in GDP binding between +30 and +5 degrees C. Thyroxine was found to lower the GDP binding markedly at +5 degrees C, less so at +22 degrees C, while no effect was evident at +30 degrees C. The values at +22 and +30 degrees C were identical. The other parameters studied all confirmed these results. The conclusion made is that the thyroxine-induced rise in basal metabolic rate lowers the critical temperature and reduces the demand for nonshivering thermogenesis. This is reflected in the reduced GDP binding and hence heating capacity of the brown fat mitochondria.


Author(s):  
Yuehui Tian ◽  
Shang Yang ◽  
Shiqiang Gao

Second messengers, cyclic adenosine 3'-5'-monophosphate (cAMP) and cyclic guanosine 3'-5'-monophosphate (cGMP) are playing important roles in many animal cells by regulating intracellular signaling pathways and modulating cell physiology. Environmental cues like temperature, light and chemical compounds can stimulate cell surface receptors and trigger the generation of second messengers and the following regulations. Spread of cAMP and cGMP is further shaped by cyclic nucleotide phosphodiesterases (PDEs) for orchestration of intracellular microdomain signaling. However, localized intracellular cAMP and cGMP signaling requires further investigation. Optogenetic manipulation of cAMP and cGMP offers new opportunities of spatio-temporally precise study of their signaling mechanism. Light-gated nucleotide cyclases are well developed and applied for cAMP/cGMP manipulation. Recently discovered rhodopsin phosphodiesterase gene from protists established new and direct biological connection between light and PDEs. Light-regulated PDEs are under development and of demand to complete the toolkit of cAMP/cGMP manipulation. In this review, we summarize the state of the art, pros and cons of artificial and natural light-regulated PDEs and discuss potential new strategies of developing light-gated PDEs for optogenetic manipulation.


2021 ◽  
Author(s):  
Hijam Nonibala ◽  
Braj Bansh Prasad Gupta

Abstract Transcription of arylalkylamine N-acetyltransferase 2 (aanat2) gene leads to formation of AANAT2 - the rate-limiting enzyme in melatonin synthesis pathway in photosensitive fish pineal organ. However, unlike in avian and mammalian pineal gland, there is practically no information on signal transduction pathway(s) involved in regulation of aanat2 gene transcription in the fish pineal organ. Therefore, we investigated the role of important molecular components of signalling via cAMP, cGMP, Ca2+ involving PKA, PKG, PKC, MeK and p38 MAP kinase as well as possible role of serine/threonine phosphatases, CREB and CBP using their specific inhibitors and/or activators in aanat2 gene transcription in the fish pineal organ maintained under in vitro culture-conditions. db-cAMP and db-cGMP stimulated the expression of aanat2 gene. db-cAMP- and cGMP-induced aanat2 gene expression was significantly reduced in the presence of H-89 (specific inhibitor of PKA), KT5823 (specific inhibitor of PKG), chelerythrine chloride (specific inhibitor of PKC), U0126 ethanolate (specific inhibitor of MeK) and SB 202190 monohydrochloride hydrate (specific inhibitor of p38 MAP kinase). Inhibitors of PP1 and PP2A significantly increased aanat2 gene expression as well as significantly reduced cAMP- and cGMP-induced gene transcription, while inhibitor of PP2B had no effect on aanat2 gene expression. Inhibitors of both CREB and CBP-CREB interaction completely blocked cAMP-induced aanat2 gene transcription. Based on these findings, we suggest that cAMP, cGMP and Ca2+ stimulate aanat2 gene transcription via PKA, PKG and PKC, respectively. Further, protein phosphatases and CBP-CREB-CRE pathway are actively involved in regulation of on aanat2 gene expression in the fish pineal organ.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1325
Author(s):  
Fenfen Li ◽  
Xin Cui ◽  
Jia Jing ◽  
Shirong Wang ◽  
Huidong Shi ◽  
...  

Obesity results from a chronic energy imbalance due to energy intake exceeding energy expenditure. Activation of brown fat thermogenesis has been shown to combat obesity. Epigenetic regulation, including DNA methylation, has emerged as a key regulator of brown fat thermogenic function. Here we aimed to study the role of Dnmt3b, a DNA methyltransferase involved in de novo DNA methylation, in the regulation of brown fat thermogenesis and obesity. We found that the specific deletion of Dnmt3b in brown fat promotes the thermogenic and mitochondrial program in brown fat, enhances energy expenditure, and decreases adiposity in female mice fed a regular chow diet. With a lean phenotype, the female knockout mice also exhibit increased insulin sensitivity. In addition, Dnmt3b deficiency in brown fat also prevents diet-induced obesity and insulin resistance in female mice. Interestingly, our RNA-seq analysis revealed an upregulation of the PI3K-Akt pathway in the brown fat of female Dnmt3b knockout mice. However, male Dnmt3b knockout mice have no change in their body weight, suggesting the existence of sexual dimorphism in the brown fat Dnmt3b knockout model. Our data demonstrate that Dnmt3b plays an important role in the regulation of brown fat function, energy metabolism and obesity in female mice.


Obesity ◽  
2019 ◽  
Vol 27 (6) ◽  
pp. 963-970
Author(s):  
Borja Martinez‐Tellez ◽  
Mireia Adelantado‐Renau ◽  
Francisco M. Acosta ◽  
Guillermo Sanchez‐Delgado ◽  
Antonio Martinez‐Nicolas ◽  
...  

2000 ◽  
Vol 278 (1) ◽  
pp. H208-H221 ◽  
Author(s):  
Sook Jeong Lee ◽  
Sung Zoo Kim ◽  
Xun Cui ◽  
Suhn Hee Kim ◽  
Kyung Sun Lee ◽  
...  

The purpose of the present experiments was to define the role of C-type natriuretic peptide (CNP) in the regulation of atrial secretion of atrial natriuretic peptide (ANP) and atrial stroke volume. Experiments were performed in perfused beating and nonbeating quiescent atria, single atrial myocytes, and atrial membranes. CNP suppressed in a dose-related fashion the increase in atrial stroke volume and ANP secretion induced by atrial pacing. CNP caused a right shift in the positive relationships between changes in the secretion of ANP and atrial stroke volume or translocation of the extracellular fluid (ECF), which indicates the suppression of atrial myocytic release of ANP into the paracellular space. The effects of CNP on the secretion and contraction were mimicked by 8-bromoguanosine 3′,5′-cyclic monophosphate (8-BrcGMP). CNP increased cGMP production in the perfused atria, and the effects of CNP on the secretion of ANP and atrial dynamics were accentuated by pretreatment with an inhibitor of cGMP phosphodiesterase, zaprinast. An inhibitor of the biological natriuretic peptide receptor (NPR), HS-142-1, attenuated the effects of CNP. The suppression of ANP secretion by CNP and 8-BrcGMP was abolished by a depletion of extracellular Ca2+ in nonbeating atria. Natriuretic peptides increased cGMP production in atrial membranes with a rank order of potency of CNP > BNP > ANP, and the effect was inhibited by HS-142-1. CNP and 8-BrcGMP increased intracellular Ca2+ concentration transients in single atrial myocytes, and mRNAs for CNP and NPR-B were expressed in the rabbit atrium. From these results we conclude that atrial ANP release and stroke volume are controlled by CNP via NPR-B-cGMP mediated signaling, which may in turn act via regulation of intracellular Ca2+.


1995 ◽  
Vol 269 (6) ◽  
pp. R1321-R1326 ◽  
Author(s):  
S. A. Davies ◽  
G. R. Huesmann ◽  
S. H. Maddrell ◽  
M. J. O'Donnell ◽  
N. J. Skaer ◽  
...  

A cardioacceleratory peptide, CAP2b, identified originally in the lepidopteran Manduca sexta, stimulates fluid secretion by Malpighian tubules of the dipteran Drosophila melanogaster. High-performance liquid chromatography analyses of adult D. melanogaster reveal the presence of a CAP2b-like peptide, that coelutes with M. sexta CAP2b and synthetic CAP2b and that has CAP2b-like effects on the M. sexta heart. CAP2b accelerates fluid secretion in tubules stimulated by adenosine 3',5'-cyclic monophosphate (cAMP) but has no effect on tubules stimulated by guanosine 3',5'-cyclic monophosphate (cGMP), implying that it acts through the latter pathway. By contrast, the action of leucokinin is additive to both cAMP and cGMP but not to thapsigargin, suggesting that leucokinin acts by the elevation of intracellular calcium. CAP2b stimulation elevates tubule cGMP levels but not those of cAMP. By contrast, leucokinin has no effect on levels of either cyclic nucleotide. Both CAP2b and cGMP increase transepithelial potential difference, suggesting that stimulation of vacuolar-adenosinetriphosphatase action underlies the corresponding increases in fluid secretion. Overall, the results show that a Drosophila CAP2b-related peptide acts to stimulate fluid secretion by Malpighian tubules through the cGMP-signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document