The quantum mechanical Hilbert space formalism and the quantum mechanical probability space of the outcomes of measurements

Author(s):  
Mioara Mugur-Schachter
1978 ◽  
Vol 10 (4) ◽  
pp. 725-729 ◽  
Author(s):  
J. V. Corbett

Quantum mechanics is usually described in the terminology of probability theory even though the properties of the probability spaces associated with it are fundamentally different from the standard ones of probability theory. For example, Kolmogorov's axioms are not general enough to encompass the non-commutative situations that arise in quantum theory. There have been many attempts to generalise these axioms to meet the needs of quantum mechanics. The focus of these attempts has been the observation, first made by Birkhoff and von Neumann (1936), that the propositions associated with a quantum-mechanical system do not form a Boolean σ-algebra. There is almost universal agreement that the probability space associated with a quantum-mechanical system is given by the set of subspaces of a separable Hilbert space, but there is disagreement over the algebraic structure that this set represents. In the most popular model for the probability space of quantum mechanics the propositions are assumed to form an orthocomplemented lattice (Mackey (1963), Jauch (1968)). The fundamental concept here is that of a partial order, that is a binary relation that is reflexive and transitive but not symmetric. The partial order is interpreted as embodying the logical concept of implication in the set of propositions associated with the physical system. Although this model provides an acceptable mathematical expression of the probabilistic structure of quantum mechanics in that the subspaces of a separable Hilbert space give a representation of an ortho-complemented lattice, it has several deficiencies which will be discussed later.


1978 ◽  
Vol 10 (04) ◽  
pp. 725-729
Author(s):  
J. V. Corbett

Quantum mechanics is usually described in the terminology of probability theory even though the properties of the probability spaces associated with it are fundamentally different from the standard ones of probability theory. For example, Kolmogorov's axioms are not general enough to encompass the non-commutative situations that arise in quantum theory. There have been many attempts to generalise these axioms to meet the needs of quantum mechanics. The focus of these attempts has been the observation, first made by Birkhoff and von Neumann (1936), that the propositions associated with a quantum-mechanical system do not form a Boolean σ-algebra. There is almost universal agreement that the probability space associated with a quantum-mechanical system is given by the set of subspaces of a separable Hilbert space, but there is disagreement over the algebraic structure that this set represents. In the most popular model for the probability space of quantum mechanics the propositions are assumed to form an orthocomplemented lattice (Mackey (1963), Jauch (1968)). The fundamental concept here is that of a partial order, that is a binary relation that is reflexive and transitive but not symmetric. The partial order is interpreted as embodying the logical concept of implication in the set of propositions associated with the physical system. Although this model provides an acceptable mathematical expression of the probabilistic structure of quantum mechanics in that the subspaces of a separable Hilbert space give a representation of an ortho-complemented lattice, it has several deficiencies which will be discussed later.


Author(s):  
Alireza Jamali

It is known since Madelung that the Schrödinger equation can be thought of as governing the evolution of an incompressible fluid, but the current theory fails to mathematically express this incompressibility in terms of the wavefunction without facing problem. In this paper after showing that the current definition of quantum-mechanical momentum as a linear operator is neither the most general nor a necessary result of the de Broglie hypothesis, a new definition is proposed that can yield both a meaningful mathematical condition for the incompressibility of the Madelung fluid, and nonlinear generalisations of Schrödinger and Klein-Gordon equations. The derived equations satisfy all conditions that are expected from a proper generalisation: simplification to their linear counterparts by a well-defined dynamical condition; Galilean and Lorentz invariance (respectively); and signifying only rays in the Hilbert space.


Author(s):  
Jeffrey A. Barrett

Moving to more subtle experiments, we consider how the standard formulation of quantum mechanics predicts and explains interference phenomena. Tracking the conditions under which one observes interference phenomena leads to the notion of quantum decoherence. We see why one must sharply distinguish between collapse phenomena and decoherence phenomena on the standard formulation of quantum mechanics. While collapses explain determinate measurement records, environmental decoherence just produces more complex, entangled states where the physical systems involved lack ordinary physical properties. We characterize the quantum-mechanical wave function as both an element of a Hilbert space and a complex-valued function over a configuration space. We also discuss how the wave function is interpreted in the standard theory.


1980 ◽  
Vol 35 (4) ◽  
pp. 437-441 ◽  
Author(s):  
W. Rehder

Abstract Necessary and sufficient conditions for commutativity of two projections in Hilbert space are given through properties of so-called conditional connectives which are derived from the conditional probability operator PQP. This approach unifies most of the known proofs, provides a few new criteria, and permits certain suggestive interpretations for compound properties of quantum-mechanical systems.


2019 ◽  
Vol 26 (04) ◽  
pp. 1950017 ◽  
Author(s):  
F. di Cosmo ◽  
A. Ibort ◽  
G. Marmo

Schwinger’s algebra of selective measurements has a natural interpretation in terms of groupoids. This approach is pushed forward in this paper to show that the theory of coherent states has a natural setting in the framework of groupoids. Thus given a quantum mechanical system with associated Hilbert space determined by a representation of a groupoid, it is shown that any invariant subset of the group of invertible elements in the groupoid algebra determines a family of generalized coherent states provided that a completeness condition is satisfied. The standard coherent states for the harmonic oscillator as well as generalized coherent states for f-oscillators are exemplified in this picture.


1990 ◽  
Vol 45 (8) ◽  
pp. 953-957 ◽  
Author(s):  
Nicolae Marinescu ◽  
Rudolf Nistor

AbstractThe formal analogy between the distribution of the electromagnetic field in waveguides and microwave cavities and quantum mechanical probability distributions is put into evidence. A waveguide of a cut-off frequency ωc acts on an electromagnetic wave as a quantum potential barrier Ug = hωc. A non-habitual time independent Schrödinger equation, describing guided wave propagation, is established


Sign in / Sign up

Export Citation Format

Share Document