Enhanced Sequence Reconstruction with DNA Microarray Application

Author(s):  
Samuel A. Heath ◽  
Franco P. Preparata
2013 ◽  
Vol 35 (3) ◽  
pp. 287-306
Author(s):  
Yan PAN ◽  
Jin-Ke WANG

2017 ◽  
Vol 68 (11) ◽  
pp. 2546-2550
Author(s):  
Monica Licker ◽  
Andrei Anghel ◽  
Roxana Moldovan ◽  
Elena Hogea ◽  
Delia Muntean ◽  
...  

Antimicrobial resistance (AMR) represents a real burden for the modern medicine. One of the most frecvently isolated hospital acquired (HA) pathogens wordlwide, is Methicillin resistant Staphylococcus aureus (MRSA). Recently not only HA, but also community-acquired MRSA (CA-MRSA) infections have been reported. A prospective study was performed between February 2009 and October 2010, with the aim to investigate bacterial resistance of CA-MRSA and HA-MRSA. DNA microarray technology has been used for the detection of 4 AMR genes for the studied MRSA strains. A number of 218 HA- S.aureus strains have been isolated, from which 89 (40. 82%) were MRSA. In the community, 1.553 S.aureus strains were isolated, out of which, 356 (22. 92%) were MRSA. From these, a number of 17 HA and 12 CA �MRSA strains have been analyzed by DNA microarray technology. From 100% phenotypically described HA- MRSA, we identified mecA gene in 10 strains (58. 83%). Other 6 strains (35. 29%) have been erm(A) positive and 4 (23. 53%) - tet(O) positive. 83. 33% (10 strains) from the CA strains had mecA gene, only one (8. 33%) was erm(A) positive and 4 (33. 33%) were erm(C) positive. DNA microarray is a method allowing the concomitant scan of multiple genes and can be done within a few hours. That type of rapid and reliable methods for antimicrobial sensitivity tests are important to start an appropriate therapy.


2002 ◽  
Author(s):  
Chi-Fang Wu ◽  
James J. Valdes ◽  
Jennifer W. Sekowski ◽  
William E. Bentley

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 254
Author(s):  
Michel-Edwar Mickael ◽  
Norwin Kubick ◽  
Pavel Klimovich ◽  
Patrick Henckell Flournoy ◽  
Irmina Bieńkowska ◽  
...  

Infiltration of the endothelial layer of the blood-brain barrier by leukocytes plays a critical role in health and disease. When passing through the endothelial layer during the diapedesis process lymphocytes can either follow a paracellular route or a transcellular one. There is a debate whether these two processes constitute one mechanism, or they form two evolutionary distinct migration pathways. We used artificial intelligence, phylogenetic analysis, HH search, ancestor sequence reconstruction to investigate further this intriguing question. We found that the two systems share several ancient components, such as RhoA protein that plays a critical role in controlling actin movement in both mechanisms. However, some of the key components differ between these two transmigration processes. CAV1 genes emerged during Trichoplax adhaerens, and it was only reported in transcellular process. Paracellular process is dependent on PECAM1. PECAM1 emerged from FASL5 during Zebrafish divergence. Lastly, both systems employ late divergent genes such as ICAM1 and VECAM1. Taken together, our results suggest that these two systems constitute two different mechanical sensing mechanisms of immune cell infiltrations of the brain, yet these two systems are connected. We postulate that the mechanical properties of the cellular polarity is the main driving force determining the migration pathway. Our analysis indicates that both systems coevolved with immune cells, evolving to a higher level of complexity in association with the evolution of the immune system.


Cosmetics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 60
Author(s):  
Hisae Aoshima ◽  
Masayuki Ito ◽  
Rinta Ibuki ◽  
Hirokazu Kawagishi

In this study, we verified the effects of 2-aza-8-oxohypoxanthine (AOH) on human epidermal cell proliferation by performing DNA microarray analysis. Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, which measures mitochondrial respiration in normal human epidermal keratinocyte (NHEK) cells. Gene expression levels were determined by DNA microarray analysis of 177 genes involved in skin aging and disease. AOH showed a significant increase in cell viability at concentrations between 7.8 and 31.3 μg/mL and a significant decrease at concentrations above 250 μg/mL. DNA microarray analysis showed that AOH significantly increased the gene expression of CLDN1, DSC1, DSG1, and CDH1 (E-cadherin), which are involved in intercellular adhesion and skin barrier functioning. AOH also up-regulated the expression of KLK5, KLK7, and SPIMK5, which are proteases involved in stratum corneum detachment. Furthermore, AOH significantly stimulated the expression of KRT1, KRT10, TGM1, and IVL, which are considered general differentiation indicators, and that of SPRR1B, a cornified envelope component protein. AOH exerted a cell activation effect on human epidermal cells. Since AOH did not cause cytotoxicity, it was considered that the compound had no adverse effects on the skin. In addition, it was found that AOH stimulated the expression levels of genes involved in skin barrier functioning by DNA microarray analysis. Therefore, AOH has the potential for practical use as a cosmetic ingredient. This is the first report of efficacy evaluation tests performed for AOH.


2021 ◽  
Vol 69 ◽  
pp. 131-141
Author(s):  
Matthew A. Spence ◽  
Joe A. Kaczmarski ◽  
Jake W. Saunders ◽  
Colin J. Jackson

Sign in / Sign up

Export Citation Format

Share Document