Drag, Lift and Virtual Mass Forces

2007 ◽  
pp. 31-82
Author(s):  
Nikolay I. Kolev
Keyword(s):  
ARS Journal ◽  
1961 ◽  
Vol 31 (6) ◽  
pp. 757-763 ◽  
Author(s):  
HOLT ASHLEY ◽  
GIFFORD W. ASHER
Keyword(s):  

1966 ◽  
Vol 92 (1) ◽  
pp. 81-82
Author(s):  
O. C. Zienkiewicz ◽  
B. Nath
Keyword(s):  

1971 ◽  
Vol 97 (11) ◽  
pp. 1901-1902
Author(s):  
Frederic T. Mavis
Keyword(s):  

2018 ◽  
Vol 35 (6) ◽  
pp. 2386-2402 ◽  
Author(s):  
Ming Liu ◽  
Shan Cao ◽  
Shuliang Cao

Purpose The modeling of interphase forces plays a significant role in the numerical simulation of gas–liquid flow in a rotodynamic multiphase pump, which deserves detailed study. Design/methodology/approach Numerical analysis is conducted to estimate the influence of interphase forces, including drag force, lift force, virtual mass force, wall lubrication force and turbulent dispersion force. Findings The results show that the magnitude of the interphase forces can be sorted by: drag force > virtual mass force > lift force > turbulent dispersion force > wall lubrication force. The relations between interphase forces and velocity difference of gas–liquid flow and also the interphase forces and gas volume fraction are revealed. The distribution characteristics of interphase forces in the passages from impeller inlet to diffuser outlet are illustrated and analyzed. According to the results, apart from the drag force, the virtual mass force, lift force and turbulent dispersion force are required, whereas wall lubrication force can be neglected for numerical simulation of gas–liquid flow in a rotodynamic multiphase pump. Compared with the conventional numerical method which considers drag force only, the relative errors of predicted pressure rise and efficiency based on the proposed numerical method in account of four major forces can be reduced by 4.95 per cent and 3.00 per cent, respectively. Originality value The numerical analysis reveals the magnitude and distribution of interphase forces inside multiphase pump, which is meaningful for the simulation and design of multiphase pump.


1996 ◽  
Vol 63 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Moon K. Kwak

This paper is concerned with the virtual mass effect on the natural frequencies and mode shapes of rectangular plates due to the presence of the water on one side of the plate. The approximate formula, which mainly depends on the so-called nondimensionalized added virtual mass incremental factor, can be used to estimate natural frequencies in water from natural frequencies in vacuo. However, the approximate formula is valid only when the wet mode shapes are almost the same as the one in vacuo. Moreover, the nondimensionalized added virtual mass incremental factor is in general a function of geometry, material properties of the plate and mostly boundary conditions of the plate and water domain. In this paper, the added virtual mass incremental factors for rectangular plates are obtained using the Rayleigh-Ritz method combined with the Green function method. Two cases of interfacing boundary conditions, which are free-surface and rigid-wall conditions, and two cases of plate boundary conditions, simply supported and clamped cases, are considered in this paper. It is found that the theoretical results match the experimental results. To investigate the validity of the approximate formula, the exact natural frequencies and mode shapes in water are calculated by means of the virtual added mass matrix. It is found that the approximate formula predicts lower natural frequencies in water with a very good accuracy.


2018 ◽  
Vol 14 (27) ◽  
pp. 68-79
Author(s):  
Manuel Alejandro Ospina ◽  
Liliana María Usuga Manco

Hydrodynamic interaction is a sensitive process for gravity concentration equipment. Because of the nonlinearity and complexity of interaction dynamics due the solid particles and water, reliable mathematical models are needed to perform plant width design (PWD)-oriented tasks. To this end, in this paper we present a study of particle motion in a water oscillating flow subjected to a sinusoidal profile on a jig device, which is a high yield and high recovery gravimetric concentrator device widely used in minerals processing. A mathematical Eulerian-Lagrangian model (ELM) is used where fluid motion is calculated by solving the Navier-Stokes and continuity equations by a widely used numerical procedure call Semi-Implicit Method for Pressure Linked Equations algorithm (SIMPLE). The motion of individual particles is obtained by a forces balance applying the Newton’s second law of motion through the action of forces imposed by the water and gravity. Liquid-solid interactions forces are calculated by the mathematical Eulerian-Lagrangian model extended to a particle suspension having a wide size and density distribution. The calculation and comparison of Basset, pressure gradient and virtual mass forces with other forces (drag and buoyancy) acting on particle trajectories in water oscillating flows were carried out under turbulent regimen flow. It was found that Basset, pressure gradient and virtual mass forces have a significant effect on the particle’s trajectories affecting their subsequent stratification. Furthermore, the conditions under which these forces can be neglected in the jig’s hydrodynamic model were studied. The study demonstrates significant differences in the particle trajectories for various size and density distribution.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Yuanhua Lin ◽  
Xiangwei Kong ◽  
Yijie Qiu ◽  
Qiji Yuan

Investigation of propagation characteristics of a pressure wave is of great significance to the solution of the transient pressure problem caused by unsteady operations during management pressure drilling operations. With consideration of the important factors such as virtual mass force, drag force, angular frequency, gas influx rate, pressure, temperature, and well depth, a united wave velocity model has been proposed based on pressure gradient equations in drilling operations, gas-liquid two-fluid model, the gas-drilling mud equations of state, and small perturbation theory. Solved by adopting the Runge-Kutta method, calculation results indicate that the wave velocity and void fraction have different values with respect to well depth. In the annulus, the drop of pressure causes an increase in void fraction along the flow direction. The void fraction increases first slightly and then sharply; correspondingly the wave velocity first gradually decreases and then slightly increases. In general, the wave velocity tends to increase with the increase in back pressure and the decrease of gas influx rate and angular frequency, significantly in low range. Taking the virtual mass force into account, the dispersion characteristic of the pressure wave weakens obviously, especially at the position close to the wellhead.


Sign in / Sign up

Export Citation Format

Share Document