Creating Unique Cell Microenvironments for the Engineering of a Functional Cardiac Patch

Author(s):  
Tal Dvir ◽  
Jonathan Leor ◽  
Smadar Cohen
Keyword(s):  
2019 ◽  
Vol 9 (8) ◽  
pp. 1615 ◽  
Author(s):  
Cristian Bogdan Iancu ◽  
Mugurel Constantin Rusu ◽  
Laurenţiu Mogoantă ◽  
Sorin Hostiuc ◽  
Oana Daniela Toader

A great interest has developed over the last several years in research on interstitial Cajal-like cells (ICLCs), later renamed to telocytes (TCs). Such studies are restricted by diverse limitations. We aimed to critically review (sub)epicardial ICLCs/TCs and to bring forward supplemental immunohistochemical evidence on (sub)epicardial stromal niche inhabitants. We tested the epicardial expressions of CD117/c-kit, CD34, Cytokeratin 7 (CK7), Ki67, Platelet-Derived Growth Factor Receptor (PDGFR)-α and D2-40 in adult human cardiac samples. The mesothelial epicardial cells expressed D2-40, CK7, CD117/c-kit and PDGFR-α. Subepicardial D2-40-positive lymphatic vessels and isolated D2-40-positive and CK7-positive subepicardial cells were also found. Immediate submesothelial spindle-shaped cells expressed Ki-67. Submesothelial stromal cells and endothelial tubes were PDGFR-α-positive and CD34-positive. The expression of CD34 was pan-stromal, so a particular stromal cell type could not be distinguished. The stromal expression of CD117/c-kit was also noted. It seems that epicardial TCs could not be regarded as belonging to a unique cell type until (pre)lymphatic endothelial cells are inadequately excluded. Markers such as CD117/c-kit or CD34 seem to be improper for identifying TCs as a distinctive cell type. Care should be taken when using the immunohistochemical method and histological interpretations, as they may not produce accurate results.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1004 ◽  
Author(s):  
J. Barbara Nebe ◽  
Henrike Rebl ◽  
Michael Schlosser ◽  
Susanne Staehlke ◽  
Martina Gruening ◽  
...  

Biomaterials should be bioactive in stimulating the surrounding tissue to accelerate the ingrowth of permanent implants. Chemical and topographical features of the biomaterial surface affect cell physiology at the interface. A frequently asked question is whether the chemistry or the topography dominates the cell-material interaction. Recently, we demonstrated that a plasma-chemical modification using allylamine as a precursor was able to boost not only cell attachment and cell migration, but also intracellular signaling in vital cells. This microwave plasma process generated a homogenous nanolayer with randomly distributed, positively charged amino groups. In contrast, the surface of the human osteoblast is negatively charged at −15 mV due to its hyaluronan coat. As a consequence, we assumed that positive charges at the material surface—provoking electrostatic interaction forces—are attractive for the first cell encounter. This plasma-chemical nanocoating can be used for several biomaterials in orthopedic and dental implantology like titanium, titanium alloys, calcium phosphate scaffolds, and polylactide fiber meshes produced by electrospinning. In this regard, we wanted to ascertain whether plasma polymerized allylamine (PPAAm) is also suitable for increasing the attractiveness of a ceramic surface for dental implants using Yttria-stabilized tetragonal zirconia.


Biomaterials ◽  
2008 ◽  
Vol 29 (26) ◽  
pp. 3547-3556 ◽  
Author(s):  
Hao-Ji Wei ◽  
Chun-Hung Chen ◽  
Wen-Yu Lee ◽  
Iwen Chiu ◽  
Shiaw-Min Hwang ◽  
...  

2007 ◽  
Vol 195 (3) ◽  
pp. 407-414 ◽  
Author(s):  
Min Zhao ◽  
Stephanie A Amiel ◽  
Michael R Christie ◽  
Paolo Muiesan ◽  
Parthi Srinivasan ◽  
...  

The origin of cells replacing ageing β-cells in adult life is unknown. This study assessed the expression of classic stem cell markers: Oct4, Sox2 and CD34 in islet-enriched fractions versus exocrine cell-enriched fractions from 25 adult human pancreases following human islet isolation. Expression of Oct4, Sox2 and CD34 mRNAs was found in all cell samples, with no significant differences between endocrine and exocrine cell fractions. Immunohistochemical staining for Oct4, Sox2, CD133, CD34, CK19, insulin and nestin on human pancreas sections showed that the majority of Oct4+ve cells were found in the walls of small ducts. Similar localisations were observed for Sox2+ve cells. The majority of Sox2+ve cells were found to co-express Oct4 proteins, but not vice versa. Cells positive for Oct4 and Sox2 appeared to be a unique cell population in the adult human pancreases without co-expression for CK19, CD34, CD133, insulin and nestin proteins. The numbers of Oct4+ve and Sox2+ve cells varied among donors and were ∼1–200 and 1–30 per 100 000 pancreatic cells respectively.


View ◽  
2021 ◽  
pp. 20200153
Author(s):  
Mei Li ◽  
Hao Wu ◽  
Yuehui Yuan ◽  
Benhui Hu ◽  
Ning Gu

2021 ◽  
Author(s):  
David Patrocinio Caballero ◽  
Jorge Loureiro ◽  
Victor P. Galvan Chacon ◽  
Maximiano P. Ribeiro ◽  
Sonia Miguel ◽  
...  
Keyword(s):  

2008 ◽  
Vol 105 (48) ◽  
pp. 18942-18946 ◽  
Author(s):  
A.-C. Lindas ◽  
E. A. Karlsson ◽  
M. T. Lindgren ◽  
T. J. G. Ettema ◽  
R. Bernander
Keyword(s):  

2017 ◽  
Vol 23 (3) ◽  
pp. 146-155 ◽  
Author(s):  
Junnan Tang ◽  
Adam Vandergriff ◽  
Zegen Wang ◽  
Michael Taylor Hensley ◽  
Jhon Cores ◽  
...  
Keyword(s):  

Author(s):  
Ryan Geer ◽  
Suyi Li

This study aims to examine the coiling and uncoiling motion of a soft pneumatic actuator reinforced with tilted helix fibers. Coiling motion can be quite useful for robotic manipulation and locomotion purposes. This research proposes and investigates a novel actuator that is inspired and derived from the unique cell wall architecture in the seed appendage of Stork’s Bill plant (Erodium Gruinum). These plant cells are reinforced by cellulose fibers distributed in a tilted helix pattern — helixes that are tilted at a certain angle with respect to the longitudinal axis of the cell. As a result, the seed appendage can coil and uncoil via a combination of twisting and bending. This paper discusses the design, fabrication, and testing of a soft actuator that can mimic this sophisticated motion. This actuator consists of Kevlar fiber thread wrapped around a silicon rubber body that has the shape of a tube. The tube will be capped at both ends so that it can be pressurized internally to induce motion. Once the design parameter has been chosen, the soft actuator are fabricated by 1) designing and 3D printing molds, 2) tube casting and fiber wrapping, and 3) creating the end caps for pressure sealing. Carefully executing these fabrication steps is essential because any errors could give undesired deformation. Several soft actuators prototypes are fabricated based on different design choices regarding the actuator radius, tube wall thickness, and the number of tilted helix fibers (aka. fiber coverage). Proof-of-concept tests show that these actuator prototypes can indeed exhibit a combined twisting and bending under internal pressurization: all are the necessary receipts to achieve the coiling and uncoiling motion. Result of this paper can pave the way for a new family of soft actuators capable of unprecedented and sophisticated actuation motions, which are particularly appealing for soft robot application.


Sign in / Sign up

Export Citation Format

Share Document