scholarly journals Plasma Polymerized Allylamine—The Unique Cell-Attractive Nanolayer for Dental Implant Materials

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1004 ◽  
Author(s):  
J. Barbara Nebe ◽  
Henrike Rebl ◽  
Michael Schlosser ◽  
Susanne Staehlke ◽  
Martina Gruening ◽  
...  

Biomaterials should be bioactive in stimulating the surrounding tissue to accelerate the ingrowth of permanent implants. Chemical and topographical features of the biomaterial surface affect cell physiology at the interface. A frequently asked question is whether the chemistry or the topography dominates the cell-material interaction. Recently, we demonstrated that a plasma-chemical modification using allylamine as a precursor was able to boost not only cell attachment and cell migration, but also intracellular signaling in vital cells. This microwave plasma process generated a homogenous nanolayer with randomly distributed, positively charged amino groups. In contrast, the surface of the human osteoblast is negatively charged at −15 mV due to its hyaluronan coat. As a consequence, we assumed that positive charges at the material surface—provoking electrostatic interaction forces—are attractive for the first cell encounter. This plasma-chemical nanocoating can be used for several biomaterials in orthopedic and dental implantology like titanium, titanium alloys, calcium phosphate scaffolds, and polylactide fiber meshes produced by electrospinning. In this regard, we wanted to ascertain whether plasma polymerized allylamine (PPAAm) is also suitable for increasing the attractiveness of a ceramic surface for dental implants using Yttria-stabilized tetragonal zirconia.

Shinku ◽  
1997 ◽  
Vol 40 (8) ◽  
pp. 660-663
Author(s):  
Hideo OKAYAMA ◽  
Tsukasa KUBO ◽  
Noritaka MOCHIZUKI ◽  
Akiyoshi NAGATA ◽  
Hiromu ISA

Dose-Response ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 155932582093422 ◽  
Author(s):  
Michael N. Moore

Autophagy has been strongly linked with hormesis, however, it is only relatively recently that the mechanistic basis underlying this association has begun to emerge. Lysosomal autophagy is a group of processes that degrade proteins, protein aggregates, membranes, organelles, segregated regions of cytoplasm, and even parts of the nucleus in eukaryotic cells. These degradative processes are evolutionarily very ancient and provide a survival capability for cells that are stressed or injured. Autophagy and autophagic dysfunction have been linked with many aspects of cell physiology and pathology in disease processes; and there is now intense interest in identifying various therapeutic strategies involving its regulation. The main regulatory pathway for augmented autophagy is the mechanistic target of rapamycin (mTOR) cell signaling, although other pathways can be involved, such as 5′-adenosine monophosphate-activated protein kinase. Mechanistic target of rapamycin is a key player in the many highly interconnected intracellular signaling pathways and is responsible for the control of cell growth among other processes. Inhibition of mTOR (specifically dephosphorylation of mTOR complex 1) triggers augmented autophagy and the search is on the find inhibitors that can induce hormetic responses that may be suitable for treating many diseases, including many cancers, type 2 diabetes, and age-related neurodegenerative conditions.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 888
Author(s):  
Pengfei Zhang ◽  
Weidong Chen ◽  
Longhui Zhang ◽  
Shi He ◽  
Hongxing Wang ◽  
...  

In this paper, we successfully synthesized homoepitaxial diamond with high quality and atomically flat surface by microwave plasma chemical vapor deposition. The sample presents a growth rate of 3 μm/h, the lowest RMS of 0.573 nm, and the narrowest XRD FWHM of 31.32 arcsec. An effect analysis was also applied to discuss the influence of methane concentration on the diamond substrates.


ChemInform ◽  
2010 ◽  
Vol 28 (32) ◽  
pp. no-no
Author(s):  
M. S. HAQUE ◽  
H. A. NASEEM ◽  
A. P. MALSHE ◽  
W. D. BROWN

2008 ◽  
Vol 47 (4) ◽  
pp. 3050-3052
Author(s):  
Masataka Moriya ◽  
Yuji Matsumoto ◽  
Yoshinao Mizugaki ◽  
Tadayuki Kobayashi ◽  
Kouichi Usami

2000 ◽  
Vol 9 (7) ◽  
pp. 545-549
Author(s):  
Zhang Yong-ping ◽  
Gu You-song ◽  
Chang Xiang-rong ◽  
Tian Zhong-zhuo ◽  
Shi Dong-xia ◽  
...  

CrystEngComm ◽  
2022 ◽  
Author(s):  
Wei Cao ◽  
Zhibin Ma ◽  
Hongyang Zhao ◽  
Deng Gao ◽  
Qiuming Fu

On a semi-open holder, the homoepitaxial lateral growth of single-crystal diamond (SCD) was carried out via microwave plasma chemical vapor deposition (MPCVD). By tuning and optimizing two different structures of...


Sign in / Sign up

Export Citation Format

Share Document