Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients

2007 ◽  
pp. 53-63 ◽  
Author(s):  
L. Eric Cross
1998 ◽  
Vol 73 (8) ◽  
pp. 1053-1055 ◽  
Author(s):  
L. Kubler ◽  
D. Dentel ◽  
J. L. Bischoff ◽  
C. Ghica ◽  
C. Ulhaq-Bouillet ◽  
...  

2010 ◽  
Vol 25 (2) ◽  
pp. 199-206 ◽  
Author(s):  
Rozaliya I. Barabash ◽  
Hongbin Bei ◽  
Yanfei Gao ◽  
Gene E. Ice ◽  
Easo P. George

3D spatially-resolved polychromatic microdiffraction was used to nondestructively obtain depth-dependent elastic strain gradients and dislocation densities in the constituent phases of a directionally solidified NiAl–Mo eutectic composite consisting of ∼500–800 nm Mo fibers in a NiAl matrix. Measurements were made before and after the composite was compressed by 5% and 11%. The Mo fibers were analyzed both in their embedded state and after the matrix was etched to expose them as pillars. In the as-grown composite, due to differential thermal contraction during cooldown, the Mo phase is under compression and the NiAl phase is in tension. After the prestrains, the situation is reversed with the Mo phase in tension and NiAl matrix in compression. This result can be explained by taking into account the mismatch in yield strains of the constituent phases and the elastic constraints during unloading. The dislocation density in both the Mo and NiAl phases is found to increase after prestraining. Within experimental uncertainty there is little discernible difference in the total dislocation densities in the Mo phase of the 5% and 11% prestrained specimens. However, the density of the geometrically necessary dislocations and the deviatoric strain gradients increase with increasing prestrain in both the Mo and NiAl phases.


1994 ◽  
Vol 9 (2) ◽  
pp. 328-335 ◽  
Author(s):  
Ramnath Venkatraman ◽  
Paul R. Besser ◽  
John C. Bravman ◽  
Sean Brennan

Grazing incidence x-ray scattering (GIXS) with a synchrotron source was used to measure elastic strain gradients as a function of temperature in aluminum and aluminum alloy thin films of different thicknesses on silicon. The stresses in the films are induced as a result of the difference in thermal expansion coefficient between film and substrate. Disregarding minor deviations at the surface, it is shown that there are no gross strain gradients in these films in the range of temperatures (between room temperature and 400 °C) considered. Significant x-ray line broadening effects were observed, suggesting an accumulation of dislocations on cooling the films and their annealing out as the films were being reheated. The variation of the dislocation density during thermal cycling compares well in nature with that of the concurrent variation in film stress, indicating that large strain hardening effects contribute toward the film flow stress.


Author(s):  
J. Temple Black

The output of the ultramicrotomy process with its high strain levels is dependent upon the input, ie., the nature of the material being machined. Apart from the geometrical constraints offered by the rake and clearance faces of the tool, each material is free to deform in whatever manner necessary to satisfy its material structure and interatomic constraints. Noncrystalline materials appear to survive the process undamaged when observed in the TEM. As has been demonstrated however microtomed plastics do in fact suffer damage to the top and bottom surfaces of the section regardless of the sharpness of the cutting edge or the tool material. The energy required to seperate the section from the block is not easily propogated through the section because the material is amorphous in nature and has no preferred crystalline planes upon which defects can move large distances to relieve the applied stress. Thus, the cutting stresses are supported elastically in the internal or bulk and plastically in the surfaces. The elastic strain can be recovered while the plastic strain is not reversible and will remain in the section after cutting is complete.


Author(s):  
Koenraad G F Janssens ◽  
Omer Van der Biest ◽  
Jan Vanhellemont ◽  
Herman E Maes ◽  
Robert Hull

There is a growing need for elastic strain characterization techniques with submicrometer resolution in several engineering technologies. In advanced material science and engineering the quantitative knowledge of elastic strain, e.g. at small particles or fibers in reinforced composite materials, can lead to a better understanding of the underlying physical mechanisms and thus to an optimization of material production processes. In advanced semiconductor processing and technology, the current size of micro-electronic devices requires an increasing effort in the analysis and characterization of localized strain. More than 30 years have passed since electron diffraction contrast imaging (EDCI) was used for the first time to analyse the local strain field in and around small coherent precipitates1. In later stages the same technique was used to identify straight dislocations by simulating the EDCI contrast resulting from the strain field of a dislocation and comparing it with experimental observations. Since then the technique was developed further by a small number of researchers, most of whom programmed their own dedicated algorithms to solve the problem of EDCI image simulation for the particular problem they were studying at the time.


Author(s):  
W. Lo ◽  
J.C.H. Spence ◽  
M. Kuwabara

Work on the integration of STM with REM has demonstrated the usefulness of this combination. The STM has been designed to replace the side entry holder of a commercial Philips 400T TEM. It allows simultaneous REM imaging of the tip/sample region of the STM (see fig. 1). The REM technique offers nigh sensitivity to strain (<10−4) through diffraction contrast and high resolution (<lnm) along the unforeshortened direction. It is an ideal technique to use for studying tip/surface interactions in STM.The elastic strain associated with tunnelling was first imaged on cleaved, highly doped (S doped, 5 × 1018cm-3) InP(110). The tip and surface damage observed provided strong evidence that the strain was caused by tip/surface contact, most likely through an insulating adsorbate layer. This is consistent with the picture that tunnelling in air, liquid or ordinary vacuum (such as in a TEM) occurs through a layer of contamination. The tip, under servo control, must compress the insulating contamination layer in order to get close enough to the sample to tunnel. The contaminant thereby transmits the stress to the sample. Elastic strain while tunnelling from graphite has been detected by others, but never directly imaged before. Recent results using the STM/REM combination has yielded the first direct evidence of strain while tunnelling from graphite. Figure 2 shows a graphite surface elastically strained by the STM tip while tunnelling (It=3nA, Vtip=−20mV). Video images of other graphite surfaces show a reversible strain feature following the tip as it is scanned. The elastic strain field is sometimes seen to extend hundreds of nanometers from the tip. Also commonly observed while tunnelling from graphite is an increase in the RHEED intensity of the scanned region (see fig.3). Debris is seen on the tip and along the left edges of the brightened scan region of figure 4, suggesting that tip abrasion of the surface has occurred. High resolution TEM images of other tips show what appear to be attached graphite flakes. The removal of contamination, possibly along with the top few layers of graphite, seems a likely explanation for the observed increase in RHEED reflectivity. These results are not inconsistent with the “sliding planes” model of tunnelling on graphite“. Here, it was proposed that the force due to the tunnelling probe acts over a large area, causing shear of the graphite planes when the tip is scanned. The tunneling current is then modulated as the planes of graphite slide in and out of registry. The possiblity of true vacuum tunnelling from the cleaned graphite surface has not been ruled out. STM work function measurements are needed to test this.


2016 ◽  
Vol 186 (6) ◽  
pp. 597-625 ◽  
Author(s):  
Andrei G. Yakovlev ◽  
Vladimir A. Shuvalov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document