Foil Type Micro PEM Fuel Cell with Self-Breathing Cathode Side

2007 ◽  
pp. 123-144
Author(s):  
Stefan Wagner ◽  
Robert Hahn ◽  
Herbert Reichl
Keyword(s):  
2021 ◽  
Vol 9 ◽  
Author(s):  
Andrei Kulikovsky

Impedance of all oxygen transport processes in PEM fuel cell has negative real part in some frequency domain. A kernel for calculation of distribution of relaxation times (DRT) of a PEM fuel cell is suggested. The kernel is designed for capturing impedance with negative real part and it stems from the equation for impedance of oxygen transport through the gas-diffusion transport layer (doi:10.1149/2.0911509jes). Using recent analytical solution for the cell impedance, it is shown that DRT calculated with the novel K2 kernel correctly captures the GDL transport peak, whereas the classic DRT based on the RC-circuit (Debye) kernel misses this peak. Using K2 kernel, analysis of DRT spectra of a real PEMFC is performed. The leftmost on the frequency scale DRT peak represents oxygen transport in the channel, and the rightmost peak is due to proton transport in the cathode catalyst layer. The second, third, and fourth peaks exhibit oxygen transport in the GDL, faradaic reactions on the cathode side, and oxygen transport in the catalyst layer, respectively.


2011 ◽  
Vol 145 (2) ◽  
pp. 49-57
Author(s):  
Arkadiusz MAŁEK

Supply method of the fuel cell cathode side significantly affects the durability and efficiency of the hydrogen energy conversion. A fuel cell is a stochastic object. The paper presents air flow control of the PEM fuel cell in order to find and hold the maximum value of the net power produced by the fuel cell stack, regardless of changes of the parameters of the object of control and its outer environment. The Application of an adaptive extremum control with bi-parameter identification provide automatic adjustment of the parameters of a controller to the changing characteristics of an object. The adaptive algorithm contains a number of variables and signals that support the estimation process. The quality and speed of finding an optimal point depends on their values.


Author(s):  
Sean Goudy ◽  
S. O. Bade Shrestha ◽  
Iskender Sahin

Computational models of Polymer Electrolyte Membrane (PEM) fuel cell have historically simulated the anode side reaction assuming the system is mass transfer limited. Specifically, the models assume that the hydrogen gas mass transfer rate is much slower than the reaction rate. Although this assumption makes computational simulations easier, the model does not accurately describe the system. This model introduces a novel method of simulating the anode side reaction. Specifically, the model uses the reaction rate law kinetics of hydrogen gas adsorption onto the platinum electrode and the subsequent ionization of the hydrogen atom to model the anode side reaction dynamics. The benefit is that the model is capable of predicting the actual behavior of the system at the electrode and polymer membrane interface. Because of the computational complexity of this system, the model assumes that a fraction of the hydrogen gas in contact with the polymer membrane dissolves into the polymer membrane and diffuses to the cathode side. The fraction of hydrogen, which is dissolved into the polymer membrane, is proportional to the Damko¨hler number (Da). Specifically, the model assumes that if the reactant is not completely consumed when it comes into contact with the polymer membrane that some fraction of the hydrogen gas will dissolve into the polymer membrane and will be diffused to the cathode side. In addition, because of the slight negative charge of the polymer membrane, the model assumes that no oxygen diffuses into the polymer membrane.


2010 ◽  
Vol 157 (10) ◽  
pp. B1358 ◽  
Author(s):  
N. Khajeh-Hosseini-Dalasm ◽  
Kazuyoshi Fushinobu ◽  
Ken Okazaki

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1115
Author(s):  
Yasna Acevedo Gomez ◽  
Göran Lindbergh ◽  
Carina Lagergren

While the market for fuel cell vehicles is increasing, these vehicles will still coexist with combustion engine vehicles on the roads and will be exposed to an environment with significant amounts of contaminants that will decrease the durability of the fuel cell. To investigate different recovery methods, in this study, a PEM fuel cell was contaminated with 100 ppm of NO2 at the cathode side. The possibility to recover the cell performance was studied by using different airflow rates, different current densities, and by subjecting the cell to successive polarization curves. The results show that the successive polarization curves are the best choice for recovery; it took 35 min to reach full recovery of cell performance, compared to 4.5 h of recovery with pure air at 0.5 A cm−2 and 110 mL min−1. However, the performance recovery at a current density of 0.2 A cm−2 and air flow 275 mL min−1 was done in 66 min, which is also a possible alternative. Additionally, two operation techniques were suggested and compared during 7 h of operation: air recovery and air depletion. The air recovery technique was shown to be a better choice than the air depletion technique.


2018 ◽  
Vol 156 ◽  
pp. 03033 ◽  
Author(s):  
Mulyazmi ◽  
W.R W Daud ◽  
Silvi Octavia ◽  
Maria Ulfah

Design of the Proton Exchange Membrane (PEM) fuel cell system is still developed and improved to achieve performance and efficiency optimal. Improvement of PEM fuel cell performance can be achieved by knowing the effect of system parameters based on thermodynamics on voltage and current density. Many parameters affect the performance of PEM fuel cell, one of which is the relative humidity of the reactants that flow in on the anode and cathode sides. The results of this study show that the increase in relative humidity value on the cathode side (RHC) causes a significant increase in current density value when compared to the increase of relative humidity value on the anode side (RHA). The performance of single cells with high values is found in RHC is from 70% to 90%. The maximum current density generated at RHA is 70% and RHC is 90% with PEM operating temperature of 363 K and pressure of 1 atm


Sign in / Sign up

Export Citation Format

Share Document