3D-3-Culture: Tumor Models to Study Heterotypic Interactions in the Tumor Microenvironment

Author(s):  
Sofia P. Rebelo ◽  
Catarina Pinto ◽  
Nuno Lopes ◽  
Tatiana R. Martins ◽  
Paula Marques Alves ◽  
...  
2011 ◽  
Vol 171 (1) ◽  
pp. 136-142 ◽  
Author(s):  
Soeren Torge Mees ◽  
Wolf Arif Mardin ◽  
Christina Schleicher ◽  
Mario Colombo-Benkmann ◽  
Norbert Senninger ◽  
...  

2021 ◽  
Vol 7 (4) ◽  
pp. 444
Author(s):  
Pei Zhuang ◽  
Yi-Hua Chiang ◽  
Maria Serafim Fernanda ◽  
Mei He

Cancer still ranks as a leading cause of mortality worldwide. Although considerable efforts have been dedicated to anticancer therapeutics, progress is still slow, partially due to the absence of robust prediction models. Multicellular tumor spheroids, as a major three-dimensional (3D) culture model exhibiting features of avascular tumors, gained great popularity in pathophysiological studies and high throughput drug screening. However, limited control over cellular and structural organization is still the key challenge in achieving in vivo like tissue microenvironment. 3D bioprinting has made great strides toward tissue/organ mimicry, due to its outstanding spatial control through combining both cells and materials, scalability, and reproducibility. Prospectively, harnessing the power from both 3D bioprinting and multicellular spheroids would likely generate more faithful tumor models and advance our understanding on the mechanism of tumor progression. In this review, the emerging concept on using spheroids as a building block in 3D bioprinting for tumor modeling is illustrated. We begin by describing the context of the tumor microenvironment, followed by an introduction of various methodologies for tumor spheroid formation, with their specific merits and drawbacks. Thereafter, we present an overview of existing 3D printed tumor models using spheroids as a focus. We provide a compilation of the contemporary literature sources and summarize the overall advancements in technology and possibilities of using spheroids as building blocks in 3D printed tissue modeling, with a particular emphasis on tumor models. Future outlooks about the wonderous advancements of integrated 3D spheroidal printing conclude this review.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Liting Xue ◽  
Xingyuan Gao ◽  
Haoyu Zhang ◽  
Jianxing Tang ◽  
Qian Wang ◽  
...  

Abstract Background Signaling through VEGF/VEGFR induces cancer angiogenesis and affects immune cells. An increasing number of studies have recently focused on combining anti-VEGF/VEGFR agents and immune checkpoint inhibitors (ICIs) to treat cancer in preclinical and clinical settings. BD0801 is a humanized rabbit anti-VEGF monoclonal antibody in the clinical development stage. Methods In this study, the anti-cancer activities of BD0801 and its potential synergistic anti-tumor effects when combined with different immunotherapies were assessed by using in vitro assays and in vivo tumor models. Ex vivo studies were conducted to reveal the possible mechanisms of actions (MOA) underlying the tumor microenvironment modification. Results BD0801 showed more potent antitumor activity than bevacizumab, reflected by stronger blockade of VEGF/VEGFR binding and enhanced inhibitory effects on human umbilical vein endothelial cells (HUVECs). BD0801 exhibited dose-dependent tumor growth inhibitory activities in xenograft and murine syngeneic tumor models. Notably, combining BD0801 with either anti-PD-1 or anti-PD-L1 antibodies showed synergistic antitumor efficacy in both lung and colorectal cancer mouse models. Furthermore, the mechanistic studies suggested that the MOA of the antitumor synergy involves improved tumor vasculature normalization and enhanced T-cell mediated immunity, including increased tumor infiltration of CD8+ and CD4+ T cells and reduced double-positive CD8+PD-1+ T cells. Conclusions These data provide a solid rationale for combining antiangiogenic agents with immunotherapy for cancer treatment and support further clinical development of BD0801 in combination with ICIs.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1210-1210 ◽  
Author(s):  
Athanasios Papadas ◽  
Evan Flietner ◽  
Zachary Morrow ◽  
Joshua Wiesner ◽  
Alexander Cicala ◽  
...  

Regulated proteolysis of the tolerogenic matrix proteoglycan versican (VCAN) through the actions of ADAMTS-proteases, is associated with enhanced CD8+ infiltration in both hematopoietic and solid tumors. However, it is unclear whether the enhanced CD8+ infiltration results from proteolysis-mediated depletion of precursor VCAN at the tumor site or from generation of bioactive proteolytic fragments ("matrikines") (e.g., the 441-aa N-terminal fragment of V1-VCAN isoform, versikine). We have previously shown that versikine promotes Batf3-dendritic cell (DC) generation from FLT3L-mobilized bone marrow (BM) progenitors in vitro. However, the effects of versikine in DC homeostasis in the tumor microenvironment in vivo are unknown. To investigate the effects of versikine in DC homeostasis in vivo, we utilized the first Ras-driven myeloma (MM) model (VQ model- Rajagopalan et al., Blood 132:1006, 2018) as well as transplantable solid tumor models in both C57BL/6J (LLC lung carcinoma) and Balb/c (4T1 mammary carcinoma) backgrounds. Tumor cells were stably engineered to secrete HA-tagged versikine vs. empty-vector (EV) controls. EV-VQ or versikine-VQ myeloma cells were implanted intracardiacally into C57BL/6J syngeneic recipients and mice were monitored until they developed myeloma-related end-organ damage (hindlimb paralysis). Both groups of mice were paralyzed at similar rates. Intratumoral conventional DCs (CD138-CD45+, CD11chi,MHC IIhiLy6C-, CD64-) clustered into two populations: cDC1 (Batf3-DC: CD24hi,CD11blo), a subset with crucial activity in cross-priming anti-tumor CD8+ T cells, and cDC2 (CD24lo, CD11bhi). Versikine enhanced intratumoral Batf3-DC frequency/infiltration, while cDC2 levels were diminished in versikine-VQ BM (Figure 1A)(Batf3-DC: 48% in EV-VQ vs. 72% in versikine-VQ, p-value= 0.0246; cDC2: 52% in EV-VQ vs. 28% in versikine-VQ, p=0.0312). Monocytic-derived DC (Mo-DC: CD11chi, MHC IIhi, Ly6C+, CD64+) frequency remained unchanged. Versikine's effects were replicated in 2 solid tumor models. Versikine-expressing tumors were characterized by significantly enhanced Batf3-DC infiltration (Fig. 1A, p-value= 0.0079 for 4T1 model and <0.0001 for LLC model), whereas cDC2 numbers were diminished (p-value: 0.0079 and <0.0001 respectively). Adoptive transfer of CD45.2+ pre-DC (SIRPaint, FLIT3+, CD11c+, MHC II-, Celltrace+) in LLC-EV and LLC-versikine tumors in CD45.1+ recipients did not show any differences in 3-day differentiation potential of DC precursors, implicating other mechanisms to explain the steady-state imbalance in DC subset frequencies. To examine whether versikine's effects on the intratumoral DC milieu in vivo could be therapeutically harnessed, we compared responses to STING agonist therapy between versikine-expressing and EV tumors. LLC-EV-OVA and LLC-versikine-OVA (ovalbumin, a model antigen) -expressing tumors received therapeutic intratumoral injections of DMXAA, a murine STING agonist. Analysis of splenocytes 5 days later showed a significant increase in the frequency of OVA antigen-specific, CD8+ (MHCI:SIINFEKL tetramer+) splenocytes in LLC-versikine-bearing animals (Figure 1B). Interestingly, there was a marked increase in total central memory T splenocytes (TCM) (CD62LhiCD44hi) harvested from LLC-versikine tumor-bearing mice. We conclude that versikine influences the DC milieu in the tumor bed with promotion of intratumoral cross-presenting Batf3-DC and depletion of the cDC2 subset. Our findings highlight an unappreciated facet of immune regulation of the tumor microenvironment through matrix proteolytic fragments ("matrikines"). Whereas detection of native VCAN proteolysis on myeloma biopsies (see abstract by Dhakal et al.in this meeting) portends adverse outcomes likely due to the tolerogenic effects of accumulated precursor VCAN at the tumor site, therapeutic use of the isolated, purified fragments may promote tumor innate sensing and effector priming. VCAN-matrikines, through their effects on intratumoral Batf3-DC and antigen-specific CD8+ T cell infiltration, may potentiate in situ vaccination strategies across diverse hematopoietic and solid tumor types. Figure 1 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2611-2611
Author(s):  
Amr El-Sheikh ◽  
Gourab Bhattacharjee ◽  
Per Borgstrom ◽  
Mattias Belting ◽  
Thomas Edgington

Abstract The expression of certain proteoglycans or modification of proteins within the vascular tree, dependent on the microenvironment, is critical for elucidating the biology of endothelium specificity and development. It also facilitates the targeting of physiologic and therapeutic agents to different addresses within the vascular map. Using in vivo panning, we have identified a truncated heparin-binding domain (HBDt) that recognizes its target selectively in tumor vasculature. Here we show that it localizes selectively to the endothelial cells of intra-tumoral blood vessels of various murine tumor models, such as CT26, LLC, N202, and Tramp-L1. The HBDt, as a part of the VEGF heparin-binding domain, is conserved throughout evolution and is known to bind the VEGFR-2/Npn-1 complex. Although the VEGFR-2/Npn-1 complex is expressed elsewhere in the vascular tree, this domain only localizes to a target in tumor vasculature. We have analyzed the basis of this selectivity in vitro and in vivo. In vitro analysis has shown that chondroitin sulfates are the most potent inhibitors of HBDt binding to heparin. We also show, using Western blot and confocal microscopy analyses, that VEGFR-2 and Npn-1, although expressed in different organs, are only recognized by HBDt when coexpressed with chondroitin sulfate C (C6S) in the tumor vasculature. The HBDt colocalized with VEGFR-2, Npn-1, and C6S but with not bFGFR or heparan sulfates in the intravasculature of different tumor models. Furthermore, the selective expression of C6S oligosaccaharide, in conjunction with VEGFR-2 and Npn-1, during the angiogenesis of tumor endothelium defines the target for the HBDt but not during aortic angiogensis. Therefore, our data demonstrate that the expression of C6S, as part of the HBDt receptor, is an example of the tumor microenvironment conditioning, which imparts association of a novel target on endothelium surfaces of tumors.


2014 ◽  
Vol 20 (23) ◽  
pp. 6083-6095 ◽  
Author(s):  
Gina Song ◽  
David B. Darr ◽  
Charlene M. Santos ◽  
Mark Ross ◽  
Alain Valdivia ◽  
...  

2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A13.2-A14
Author(s):  
E Belnoue ◽  
K Das ◽  
M Rossi ◽  
T Hofer ◽  
S Danklmaier ◽  
...  

BackgroundKISIMATM platform allows the development of protein-based cancer vaccines able to induce a potent, tumor-specific CD8 and CD4 T cells response. While the cell penetrating peptide and peptide agonist for Toll like receptor (TLR)-2 and TLR-4 confer, respectively, the cell delivery and self-adjuvanticity properties, the multiantigenic domain allows the targeting of different cancer antigens, resulting in anti-tumoral efficacy in different murine models. Oncolytic viruses exert their therapeutic effects by a prolonged oncolytic action and the associated intratumoral inflammation as well as general immune activation. Arming oncolytic virus with tumor associated antigens can additionally enhance the tumor-specific T cell portion and therefore positively affect the balance of antitumor versus antiviral immune responses. The protein vaccine KISIMATM and the recombinant oncolytic virus VSV-GP-TAA (vesicular stomatitis virus pseudotyped with LCMV GP expressing tumor-associated antigens) are both promising vaccine candidates that offer a new cancer vaccination opportunity when combined in heterologous prime-boost regimen.Materials and MethodsMice were vaccinated with subcutaneous (s.c.) injection of KISIMA-TAA vaccine and/or with intravenous injection of VSV-GP-TAA in different settings. Immunogenicity was assessed by measuring the peripheral antigen-specific response. Anti-tumoral efficacy as well as in depth monitoring of TILs and tumor microenvironment modulation were assessed following therapeutic vaccination in different tumor models. Additionally, transcriptome and immunohistochemistry analyses of the TC-1 tumor have been performed. Combination of heterologous prime-boost with checkpoint blockade PD-1 therapy has been assessed.ResultsPriming with KISIMA-TAA followed by VSV-GP-TAA boost induced a large pool of polyfunctional and persistent antigen-specific cytotoxic T cells in the periphery as well as within the tumor in several tumor models. Frequencies of antigen specific T cells are significantly higher than the respective homologous vaccinations. Additionally, transcriptome analysis of a cold tumor model revealed profound changes in the tumor microenvironment upon heterologous vaccination, including a strong upregulation of gene signatures of several pro-inflammatory cytokines and chemokines required for antitumor immunity along with dendritic and T cell trafficking and activation. This was corroborated by flow-cytometric analysis of tumor-infiltrating leukocytes showing massive CD8+ and CD4+ T cell infiltration as well as repolarization of M2-like macrophages towards M1-phenotype. The presence of the CD8+ T cells within the tumor core was confirmed by immunohistochemistry analysis. Moreover, combining heterologous vaccination with checkpoint blockade further improved its therapeutic efficacy and the number of long-term survivors.ConclusionsThe KISIMA/VSV-GP heterologous prime-boost approach holds great promise for patients with primary or acquired resistance to checkpoint blockade due to its ability to induce tumor-specific T cell, improve T cell infiltration and increase tumor inflammation, even in tumors with limited permissivity for the oncolytic virus.Disclosure InformationE. Belnoue: A. Employment (full or part-time); Significant; AMAL Therapeutics SA. K. Das: None. M. Rossi: A. Employment (full or part-time); Significant; AMAL Therapeutics SA. T. Hofer: None. S. Danklmaier: None. T. Nolden: A. Employment (full or part-time); Significant; Viratherapeutics GmbH. L. Schreiber: None. K. Angerer: None. J. Kimpel: None. S. Hoegler: None. L. Kenner: None. D. von Laer: None. K. Elbers: A. Employment (full or part-time); Significant; Viratherapeutics GmbH. G. Wollmann: None. M. Derouazi: A. Employment (full or part-time); Significant; AMAL Therapeutics SA.


Sign in / Sign up

Export Citation Format

Share Document