Imaging and Quantifying Neuronal Autophagy

2022 ◽  
Keyword(s):  
2021 ◽  
Author(s):  
C. Alexander Boecker ◽  
Juliet Goldsmith ◽  
Dan Dou ◽  
Gregory G. Cajka ◽  
Erika L.F. Holzbaur

2017 ◽  
Vol 58 (14) ◽  
pp. 6113 ◽  
Author(s):  
Ke Zhu ◽  
Meng-Lu Zhang ◽  
Shu-Ting Liu ◽  
Xue-Yan Li ◽  
Shu-Min Zhong ◽  
...  
Keyword(s):  

2018 ◽  
Vol 337 ◽  
pp. 271-279 ◽  
Author(s):  
Liqian Sun ◽  
Manman Zhao ◽  
Man Liu ◽  
Peng Su ◽  
Jingbo Zhang ◽  
...  

2021 ◽  
Author(s):  
Yanhui Hao ◽  
Wenchao Li ◽  
Hui Wang ◽  
Jing Zhang ◽  
Haoyu Wang ◽  
...  

Abstract Background With the development of science and technology, microwaves are being widely used. More and more attention has been paid to the potential health hazards of microwave exposure. The regulation of miR-30a-5p (miR-30a) on autophagy is involved in the pathophysiological process of many diseases. Our previous study found that 30 mW/cm2 microwave radiation could reduce miR-30a expression and activate neuronal autophagy in rat hippocampus. However, the roles played by miR-30a in microwave-induced neuronal autophagy and related mechanisms remain largely unexplored. Results In the present study, we established neuronal damage models by exposing rat hippocampal neurons and rat adrenal pheochromocytoma (PC12) cell-derived neuron-like cells to 30 mW/cm2 microwave, which resulted in miR-30a downregulation and autophagy activation in vivo and in vitro. Bioinformatics analysis was conducted, and Beclin1, Prkaa2, Irs1, Pik3r2, Rras2, Ddit4, Gabarapl2 and autophagy-related gene 12 (Atg12) were identified as potential downstream target genes of miR-30a involved in regulating autophagy. Based on our previous findings that microwave radiation can cause a neuronal energy metabolism disorder, Prkaa2, encoding adenosine 5’-monophosphate-activated protein kinase α2 (AMPKα2, an important catalytic subunit of energy sensor AMPK), was selected for further analysis. Dual-luciferase reporter assay results showed that Prkaa2 is a downstream target gene of miR-30a. Microwave radiation increased the expression and phosphorylation (Thr172) of AMPKα both in vivo and in vitro. Moreover, the transduction of cells with miR-30a mimics suppressed AMPKα2 expression, inhibited AMPKα (Thr172) phosphorylation and reduced autophagy flux in neuron-like cells. Importantly, miR-30a mimics abolished microwave-activated autophagy and inhibited microwave-induced AMPKα (Thr172) phosphorylation. Conclusions AMPKα2 was a newly founded downstream gene of miR-30a involved in autophagy regulation, and miR-30a downregulation after microwave radiation could promote neuronal autophagy by increasing AMPKα2 expression and activating AMPK signaling.


2019 ◽  
Vol 312 ◽  
pp. 11-21 ◽  
Author(s):  
Enping Huang ◽  
Hongyan Huang ◽  
Tianshan Guan ◽  
Chao Liu ◽  
Dong Qu ◽  
...  

2019 ◽  
Vol 127 ◽  
pp. 64-72 ◽  
Author(s):  
Xudong Chen ◽  
Siyang Lin ◽  
Lei Gu ◽  
Xiaohong Zhu ◽  
Yinuo Zhang ◽  
...  

2008 ◽  
Vol 35 (3) ◽  
pp. 316-329 ◽  
Author(s):  
Victoria L. M. Herrera ◽  
Julius L. Decano ◽  
Pia Bagamasbad ◽  
Timothy Kufahl ◽  
Martin Steffen ◽  
...  

Aside from abnormal angiogenesis, dual endothelin-1/VEGF signal peptide-activated receptor deficiency ( DEspR−/−) results in aberrant neuroepithelium and neural tube differentiation, thus elucidating DEspR's role in neurogenesis. With the emerging importance of neurogenesis in adulthood, we tested the hypothesis that nonembryonic-lethal DEspR haploinsufficiency ( DEspR+/−) perturbs neuronal homeostasis, thereby facilitating aging-associated neurodegeneration. Here we show that, in male mice only, DEspR-haploinsufficiency impaired hippocampus-dependent visuospatial and associative learning and induced noninflammatory spongiform changes, neuronal vacuolation, and loss in the hippocampus, cerebral cortex, and subcortical regions, consistent with autophagic cell death. In contrast, DEspR+/− females exhibited better cognitive performance than wild-type females and showed absence of neuropathological changes. Signaling pathway analysis revealed DEspR-mediated phosphorylation of activators of autophagy inhibitor mammalian target of rapamycin (mTOR) and dephosphorylation of known autophagy inducers. Altogether, the data demonstrate DEspR-mediated diametrical, sex-specific modulation of cognitive performance and autophagy, highlight cerebral neuronal vulnerability to autophagic dysregulation, and causally link DEspR haploinsufficiency with increased neuronal autophagy, spongiosis, and cognitive decline in mice.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Jose Felix Moruno Manchon ◽  
Ndidi-Ese Uzor ◽  
Yuri Dabaghian ◽  
Erin E. Furr-Stimming ◽  
Steven Finkbeiner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document