Screening for Anticancer Activity: 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium (MTT) Assay

Author(s):  
Ramachandran Chelliah ◽  
Deog-Hwan Oh
Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 571
Author(s):  
Ahmed Gaber ◽  
Walaa F. Alsanie ◽  
Majid Alhomrani ◽  
Abdulhakeem S. Alamri ◽  
Ibrahim M. El-Deen ◽  
...  

This research aimed to produce new 1-[(aryl)(3-amino-5-oxopyrazolidin-4-ylidene) methyl]-2-oxo-1,2-dihydroquinoline-3-carboxylic acid derivatives and check their anticancer effect against the breast cancer MCF-7 cell line. The 2-oxo-1,2-dihydroquinoline-3-carboxylic acid (4) compound was obtained by hydrolyzing ethyl 2-oxo-1,2-dihydroquinoline-3-carboxylate (2) with thiourea and anhydrous potassium carbonate ethanol, which was then treated with ethyl 3-substituted 2-cyanoacrylates (6) in the presence of triethylamine in diethyl formamide to give 1-[2-(ethoxy)carbonyl-2-cyano-1-arylvinyl]-2-oxo-1,2-dihydroquinoline-3-carboxylic (7a,d). Cyclization of compound 7 with hydrazine hydrate ethanol inferred the association of 1-[(aryl)(3 amino-5-oxopyrazolidin-4-ylidene)methyl-2-oxo-1,2-dihydroquinol-3-carboxylates (8a,d). Spectroscopic and micro-analytical techniques such as IR, NMR, and elemental analysis were used to validate the structure of the synthesized organic compounds. The anticancer effects of the synthesized compounds 7a–d and 8a–d were tested by using the MTT assay on the MCF-7 cell line. When compared to the reference compound Dox, the compounds 7b, 7c, 8a, 8b, and 8c demonstrated strong anticancer activity against the MCF-7 cell line. The anticancer effects of the synthesized compounds 7a–d and 8a–d were tested against the MCF-7 cell line, using MTT assay. The compounds 7b, 7c, 8a, 8b, and 8c showed significant anticancer activity compared to the reference compound Dox against the MCF-7 cell line.


2021 ◽  
Vol 18 ◽  
Author(s):  
Zurong Song ◽  
Qin Lu ◽  
Ali Tao ◽  
Tianchen Wu

Background: Paclitaxel, a natural diterpenoid compound, has anti-tumor effect by acting on tubulin; coumarin, another kind of natural product, has anti-tumor, antibacterial effects and so on. Moreover coumarin has fluorescence. Objective: Multi target to combat tumor is an effective strategy in drug design. Therefore, combination of paclitaxel with other acticive moleculer to explore the novel lead with multi-functons is in demand. Materials and Methods: To synthsize paclitaxel-coumarin conjugate via click chemistry and to investigate anticancer activity by MTT assay and the scratch test. Results and Discussion: The results of MTT assay showed that compared with paclitaxel, the anti-tumor activity of the conjugate was significantly improved. The results of flow cytometry showed that the conjugate had stronger ability to induce apoptosis. The scratch test results showed that the conjugate had better anti- metastasis ability than paclitaxel. Conclusion: These findings indicated that paclitaxel and coumarin had synergistic effect, which provided a new idea for the development of paclitaxel monitored by fluorescence.


Author(s):  
RAJA CHINNAMANAYAKAR ◽  
EZHILARASI MR ◽  
PRABHA B ◽  
KULANDHAIVEL M

Objective: The objective of this study was to evaluate in silico and in vitro anticancer activity for synthesized cyclohexane-1,3-dione derivatives. Methods: The new series of cyclohexane-1,3-dione derivatives were synthesized based on the Michael addition reaction. Further, the structures of the synthesized compounds were confirmed by Fourier-transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), and 13C NMR spectral data. Then, the in silico molecular docking studies were carried out using AutoDock tool version 1.5.6 and AutoDock version 4.2.5.1 docking program. The antimicrobial activity was carried out using the agar disk diffusion method, and the in vitro anticancer activity was performed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for the synthesized compound. Results: In silico docking study, compound 5c showed good binding score and binding interactions with selected bacterial proteins and breast cancer protein. Further, compound (5a-5h) was tested for their antimicrobial activity and compound 5c was only tested for anticancer activity (human breast adenocarcinoma 3,4-methylenedioxyamphetamine-MB-231 cell line). Compound 5c was found to be the most active one of all the tested compounds. In the MTT assay compound, 5c showed the LC50 value of 10.31±0.003 μg/ml. In antimicrobial activity, the minimum inhibitory concentration of compound 5c is 2.5 mg/ml. Conclusion: An efficient synthesis of biologically active cyclohexane-1, 3-dione derivatives has been developed.


Author(s):  
SONY JAYARAMAN ◽  
E. JAYADEVI VARIYAR

Introduction: Cyclea peltata (Lam.) Hook.f. & Thomson is an important plant listed in Ayurveda. The plants are used in digestive, diuretic and inflammatory disorders. Aim: The present study was to study the immunomodulatory, anticancerous and antioxidative properties of the fraction isolated from Cyclea peltata. Methods: The immunomodulatory activity was evaluated in lymphocytes and THP-1 macrophage cell lines. The anticancer activity of the fraction was determined by MTT assay. The antioxidant activity was evaluated by DPPH and total antioxidant assays. Results: The fraction showed the presence of flavanoids which induced lymphocyte proliferation and also could induce nitrite production in THP-1 cell lines at 1mg/ml. It also exhibited good anticancerous activity at 100 μg/ml after 48h of incubation.  The antioxidant activity was less at this concentration and was found to be equivalent to 79± 0.03 μg/ml of ascorbic acid. Conclusion: The fraction containing flavonoid, isolated from Cyclea peltata have shown to have good immunomodulatory, antioxidant and anticancerous property.


2020 ◽  
Vol 5 (4) ◽  
pp. 301-306
Author(s):  
Praveen Kumar ◽  
Jai Prakash Kumar ◽  
Juhi Barnwal ◽  
Ritu Singh

Novel 4-{3-[2-(2-morpholin-4-yl-ethoxy)phenyl]-5-phenyl-pyrazol- 1-yl}benzenesulfonamide (7) was synthesized and evaluated for its anti-breast cancer activity. It was prepared by cyclocondensation reaction of morpholine-substituted β-diketone, 1-[2-(2-morpholin-4-yl-ethoxy)- phenyl]-3-phenyl-propane-1,3-dione (3) with 4-hydrazinobenzenesulfonamide hydrochloride (6). Chemical structure of titled compound (7) was confirmed by FTIR, 1H & 13C NMR and HRMS spectroscoic analyses. The anticancer activity of titled compound 7 was evaluated against MCF-7 breast cancer cell line by MTT assay. Molecular docking was performed to predict its plausible binding with the estrogen receptor α(ERα) using Molecular Operating Environment 2019.0101 software. The MTT assay results showed that titled compound 7 exhibited better anticancer activity against MCF7 cells (IC50: 4.25 μM) than standard drug, 4-hydroxytamoxifen (IC50: 8.22 μM). Results of molecular docking studies were found in good agreement with the results of anticancer evaluation, as the binding score of titled compound 7 (-16.9872 kcal/mol) was lower as compared to 4-hydroxytamoxifen (-15.1112 kcal/mol). The new cationic interaction of titled compound 7 with Trp383 and hydrogen bonding interaction with Phe404 in active site of ERα made its anticancer activity better than 4-hydroxytamoxifen. Thus, 4-{3-[2-(2-morpholin-4-yl-ethoxy)phenyl]-5-phenyl-pyrazol- 1-yl}benzenesulfonamide (7) was emerged as a potent anti-breast cancer agent.


2013 ◽  
Vol 436 (2) ◽  
pp. 187-189 ◽  
Author(s):  
Jenny Lee ◽  
Shalini Gupta ◽  
Jin-Sheng Huang ◽  
Lasanthi P. Jayathilaka ◽  
Bao-Shiang Lee

2018 ◽  
Vol 15 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Ali Erguc ◽  
Mehlika Dilek Altintop ◽  
Ozlem Atli ◽  
Belgin Sever ◽  
Gokalp Iscan ◽  
...  

Background: In medicinal chemistry, thiazoles have gained great importance in antifungal and anticancer drug design and development. Objectives: The aim of this study was to synthesize new quinoline-based thiazolyl hydrazone derivatives and evaluate their anticandidal and anticancer effects. Methods: New thiazolyl hydrazone derivatives were evaluated for their anticandidal effects using disc diffusion method. Ames MPF assay was carried out to determine the genotoxicity of the most effective antifungal derivative. MTT assay was also performed to assess the cytotoxic effects of the compounds on A549 human lung adenocarcinoma, HepG2 human hepatocellular carcinoma, MCF- 7 human breast adenocarcinoma and NIH/3T3 mouse embryonic fibroblast (healthy) cell lines. Methods: Results: 4-(4-Fluorophenyl)-2-(2-((quinolin-4-yl)methylene)hydrazinyl)thiazole (4) showed antifungal activity against Candida albicans and Candida krusei in the concentration of 1 mg/mL. In MTT and Ames MPF tests, it was determined that compound 4 did not show cytotoxic and genotoxic effects. MTT assay indicated that 4-(naphthalen-2-yl)-2-(2-((quinolin-4-yl)methylene) hydrazinyl)thiazole (10) showed more selective anticancer activity than cisplatin against A549 and MCF-7 cell lines. Besides, 4-(4-chlorophenyl)-2-(2-((quinolin-4-yl)methylene)hydrazinyl)thiazole (5) exhibited more selective anticancer activity than cisplatin against HepG2 cell line. Conclusion: Due to their high selectivity index, these compounds are considered as candidate compounds to participate in further research.


Sign in / Sign up

Export Citation Format

Share Document