Biocontrol Activity of Actinobacteria Against Plant Pathogens

Author(s):  
Shreya Desai ◽  
Natarajan Amaresan
2020 ◽  
Vol 9 (26) ◽  
Author(s):  
Shivani Khatri ◽  
Pavelas Sazinas ◽  
Yashbir S. Shivay ◽  
Shilpi Sharma ◽  
Lars Jelsbak

ABSTRACT Here, we report the annotated whole-genome sequence of Pseudomonas sp. strain SK, isolated in India from organic wheat rhizosphere. This strain has proved to be a species with potential biocontrol activity against soilborne plant pathogens based on antiSMASH analysis.


2013 ◽  
Vol 59 (2) ◽  
pp. 89-95 ◽  
Author(s):  
Shin-ichiro Yokoyama ◽  
Yoshitomi Adachi ◽  
Shuichi Asakura ◽  
Erina Kohyama

2019 ◽  
Vol 8 (26) ◽  
Author(s):  
Jennifer Niem ◽  
Regina Billones-Baaijens ◽  
Sandra Savocchia ◽  
Benjamin Stodart

Endophytic strains of Pseudomonas were isolated from grapevine tissues and exhibited antagonistic activity against several grapevine trunk disease pathogens. The draft genome sequences of the four strains revealed the presence of putative gene clusters that may impart biocontrol activity against plant pathogens.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 182
Author(s):  
Adrien Biessy ◽  
Martin Filion

Plant-beneficial Pseudomonas spp. aggressively colonize the rhizosphere and produce numerous secondary metabolites, such as 2,4-diacetylphloroglucinol (DAPG). DAPG is a phloroglucinol derivative that contributes to disease suppression, thanks to its broad-spectrum antimicrobial activity. A famous example of this biocontrol activity has been previously described in the context of wheat monoculture where a decline in take-all disease (caused by the ascomycete Gaeumannomyces tritici) has been shown to be associated with rhizosphere colonization by DAPG-producing Pseudomonas spp. In this review, we discuss the biosynthesis and regulation of phloroglucinol derivatives in the genus Pseudomonas, as well as investigate the role played by DAPG-producing Pseudomonas spp. in natural soil suppressiveness. We also tackle the mode of action of phloroglucinol derivatives, which can act as antibiotics, signalling molecules and, in some cases, even as pathogenicity factors. Finally, we discuss the genetic and genomic diversity of DAPG-producing Pseudomonas spp. as well as its importance for improving the biocontrol of plant pathogens.


Water ◽  
2016 ◽  
Vol 8 (11) ◽  
pp. 518 ◽  
Author(s):  
Ivaylo Sirakov ◽  
Matthias Lutz ◽  
Andreas Graber ◽  
Alex Mathis ◽  
Yordan Staykov ◽  
...  

2019 ◽  
Vol 118 (2) ◽  
pp. 022
Author(s):  
Silvina López ◽  
Graciela Pastorino ◽  
Ismael Malbran ◽  
Pedro Balatti

Bacteria promote growth by different mechanisms like phosphate (Pi) solubilization, Indol Acetic Acid (IAA) synthesis and siderophores production. The purpose of this study was to isolate bacteria that promote the growth of plants and may also act as antagonistic organisms of plant pathogens. Pi solubilizing microorganisms that were isolated from the soils of Tres Arroyos, Buenos Aires; were also able to synthesize IAA and produce siderophores. The ability of these bacteria to solubilize Pi was directly related with the synthesis of organic acids that lowered the pH and was not related with phosphatase activity. The ability of the organisms to solubilize Pi was indirectly related with the amount of soluble Pi present in the media. Though Pi solubilizing microorganisms are mainly associated with the rhizoplane exudates, in this case did not induce Pi solubilization. In addition to promote plant growth, these bacteria proved to be antagonistic of plant pathogens such as Fusarium graminearum and F. solani.


Author(s):  
C. W. Mims ◽  
E. A. Richardson

The advantages of freeze substitution fixation over conventional chemical fixation for preservation of ultrastructural details in fungi have been discussed by various authors. As most ascomycetes, basidiomycetes and deuteromycetes do not fix well using conventional chemical fixation protocols, freeze substitution has attracted the attention of many individuals interested in fungal ultrastructure. Thus far most workers using this technique on fungi have concentrated on thin walled somatic hyphae. However, in our laboratory we have experimented with the use of freeze substitution on a variety of fungal reproductive structures and spores with promising results.Here we present data on freeze substituted samples of sporangia of the zygomycete Umbellopsis vinacea, basidia of Exobasidium camelliae var. gracilis, developing teliospores of the smut Sporisorium sorghi, germinating teliospores of the rust Gymnosporangium clavipes, germinating conidia of the deuteromycete Cercosporidium personatum, and developing ascospores of Ascodesmis nigricans.Spores of G. clavipes and C. personatum were deposited on moist pieces of sterile dialysis membrane where they hydrated and germinated. Asci of A. nigricans developed on pieces of dialysis membrane lying on nutrient agar plates. U. vinacea was cultured on small pieces of agar-coated wire. In the plant pathogens E. camelliae var. gracilis and S. sorghi, a razor blade was used to remove smal1 pieces of infected host issue. All samples were plunged directly into liquid propane and processed for study according to Hoch.l Samples on dialysis membrane were flat embedded. Serial thin sections were cut using a diamond knife, collected on slot grids, and allowed to dry down onto Formvar coated aluminum racks. Sections were post stained with uranyl acetate and lead citrate.


Homeopathy ◽  
2020 ◽  
Author(s):  
Thais Moraes Ferreira ◽  
Mariana Zandomênico Mangeiro ◽  
Alexandre Macedo Almeida ◽  
Ricardo Moreira Souza

Abstract Background There are relatively few scientific works on the use of homeopathy to manage plant pathogens, particularly nematodes. A handful of studies focused on Meloidogyne spp. parasitizing vegetables have brought contradictory results on nematode control and enhancement of plant tolerance to parasitism. Objective Our goal was to assess the effect of Cina—a well-known anti-nematode ingredient—on Meloidogyne enterolobii parasitizing lettuce. Methods Cina was applied daily on nematode-inoculated plants, from the seedling stage until harvest. We tested an evenly spaced range of Hahnemannian concentrations (c), which were applied though irrigation with a constant dose of the ingredient. Several absolute and relative controls were employed to allow the assessment of the effect of Cina on nematode reproduction and lettuce growth. Results Cina affected growth of non-parasitized plants, both positively and negatively; this effect was modulated by the c applied and the thermal stress suffered by the plants in one of the assays. The effect of Cina on the growth of nematode-parasitized plants was neutral or negative. Cina reduced nematode reproduction by 25–36%. Conclusion Based on the moderate negative effect of Cina on M. enterolobii reproduction, it seems this ingredient may be useful as a complementary strategy for Meloidogyne control. But Cina did not enhance the tolerance of lettuce to Meloidogyne spp.


Sign in / Sign up

Export Citation Format

Share Document