Population, Land-Use and the Environment in a West African Savanna Ecosystem: An Approach to Sustainable Land-Use on Community Lands in Northern Ghana

1999 ◽  
pp. 251-271 ◽  
Author(s):  
Gottfried Tenkorang Agyepong ◽  
Edwin A. Gyasi ◽  
John S. Nabila ◽  
Sosthenes K. Kufogbe
2011 ◽  
Vol 20 (14) ◽  
pp. 3341-3362 ◽  
Author(s):  
Blandine Marie Ivette Nacoulma ◽  
Katharina Schumann ◽  
Salifou Traoré ◽  
Markus Bernhardt-Römermann ◽  
Karen Hahn ◽  
...  

2020 ◽  
Vol 21 ◽  
pp. e00875
Author(s):  
Larba Hubert Balima ◽  
Blandine Marie Ivette Nacoulma ◽  
Philippe Bayen ◽  
François N’Guessan Kouamé ◽  
Adjima Thiombiano

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Issouf Zerbo ◽  
Markus Bernhardt-Römermann ◽  
Oumarou Ouédraogo ◽  
Karen Hahn ◽  
Adjima Thiombiano

West African Savanna ecosystems are undergoing severe changes in their vegetation composition due to the impact of human land use and changes in climatic conditions. This study aims to examine the effect of climate, land use, and their interaction on species richness and composition of West African herbaceous vegetation. Plot based vegetation sampling was done in Burkina Faso. Specific richness and diversity indices were used to determine the effect of land use, climate, and their interaction. An importance value was computed to determine herbaceous species dominating the communities. Frequency of species is used to examine their distribution pattern. The results showed that climate significantly influenced herbaceous specific richness more than land use. However, land use had a significant effect on herbaceous vegetation composition. Herbaceous species diversity changed with environmental conditions. The floristic composition of dominant species is driven by both climate and land use. The frequency of distribution demonstrated that herbaceous species occurrences were more influenced by the mixed effect of climate and land use than their separate effects. Occasional and rare species are the most important part of herbaceous vegetation. Thus heterogeneity of Savanna ecosystem and vulnerability of herbaceous species are high.


2020 ◽  
Vol 12 (5) ◽  
pp. 1835
Author(s):  
Anja Schmitz ◽  
Bettina Tonn ◽  
Ann-Kathrin Schöppner ◽  
Johannes Isselstein

Engaging farmers as citizen scientists may be a cost-efficient way to answering applied research questions aimed at more sustainable land use. We used a citizen science approach with German horse farmers with a dual goal. Firstly, we tested the practicability of this approach for answering ‘real-life’ questions in variable agricultural land-use systems. Secondly, we were interested in the knowledge it can provide about locomotion of horses on pasture and the management factors influencing this behaviour. Out of 165 volunteers, we selected 40 participants to record locomotion of two horses on pasture and provide information on their horse husbandry and pasture management. We obtained complete records for three recording days per horse from 28 participants, resulting in a dataset on more individual horses than any other Global Positioning System study published in the last 30 years. Time spent walking was greatest for horses kept in box-stall stables, and walking distance decreased with increasing grazing time. This suggests that restrictions in pasture access may increase stress on grass swards through running and trampling, severely challenging sustainable pasture management. Our study, involving simple technology, clear instructions and rigorous quality assessment, demonstrates the potential of citizen science actively involving land managers in agricultural research.


2021 ◽  
Vol 10 (5) ◽  
pp. 272
Author(s):  
Auwalu Faisal Koko ◽  
Wu Yue ◽  
Ghali Abdullahi Abubakar ◽  
Akram Ahmed Noman Alabsi ◽  
Roknisadeh Hamed

Rapid urbanization in cities and urban centers has recently contributed to notable land use/land cover (LULC) changes, affecting both the climate and environment. Therefore, this study seeks to analyze changes in LULC and its spatiotemporal influence on the surface urban heat islands (UHI) in Abuja metropolis, Nigeria. To achieve this, we employed Multi-temporal Landsat data to monitor the study area’s LULC pattern and land surface temperature (LST) over the last 29 years. The study then analyzed the relationship between LULC, LST, and other vital spectral indices comprising NDVI and NDBI using correlation analysis. The results revealed a significant urban expansion with the transformation of 358.3 sq. km of natural surface into built-up areas. It further showed a considerable increase in the mean LST of Abuja metropolis from 30.65 °C in 1990 to 32.69 °C in 2019, with a notable increase of 2.53 °C between 2009 and 2019. The results also indicated an inverse relationship between LST and NDVI and a positive connection between LST and NDBI. This implies that urban expansion and vegetation decrease influences the development of surface UHI through increased LST. Therefore, the study’s findings will significantly help urban-planners and decision-makers implement sustainable land-use strategies and management for the city.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 616
Author(s):  
Jie Gao ◽  
Xuguang Tang ◽  
Shiqiu Lin ◽  
Hongyan Bian

The ecosystem services (ESs) provided by mountain regions can bring about benefits to people living in and around the mountains. Ecosystems in mountain areas are fragile and sensitive to anthropogenic disturbance. Understanding the effect of land use change on ESs and their relationships can lead to sustainable land use management in mountain regions with complex topography. Chongqing, as a typical mountain region, was selected as the site of this research. The long-term impacts of land use change on four key ESs (i.e., water yield (WY), soil conservation (SC), carbon storage (CS), and habitat quality (HQ)) and their relationships were assessed from the past to the future (at five-year intervals, 1995–2050). Three future scenarios were constructed to represent the ecological restoration policy and different socioeconomic developments. From 1995 to 2015, WY and SC experienced overall increases. CS and HQ increased slightly at first and then decreased significantly. A scenario analysis suggested that, if the urban area continues to increase at low altitudes, by 2050, CS and HQ are predicted to decrease moderately. However, great improvements in SC, HQ, and CS are expected to be achieved by the middle of the century if the government continues to make efforts towards vegetation restoration on the steep slopes.


Sign in / Sign up

Export Citation Format

Share Document