Crystallization Methods of Membrane Proteins: Practical Aspects of Crystallizing Plant Light-Harvesting Complexes

Author(s):  
Zhenfeng Liu ◽  
Wenrui Chang
2021 ◽  
Vol 3 (2) ◽  
pp. 262-271
Author(s):  
Pablo Reséndiz-Vázquez ◽  
Ricardo Román-Ancheyta ◽  
Roberto León-Montiel

Transport phenomena in photosynthetic systems have attracted a great deal of attention due to their potential role in devising novel photovoltaic materials. In particular, energy transport in light-harvesting complexes is considered quite efficient due to the balance between coherent quantum evolution and decoherence, a phenomenon coined Environment-Assisted Quantum Transport (ENAQT). Although this effect has been extensively studied, its behavior is typically described in terms of the decoherence’s strength, namely weak, moderate or strong. Here, we study the ENAQT in terms of quantum correlations that go beyond entanglement. Using a subsystem of the Fenna–Matthews–Olson complex, we find that discord-like correlations maximize when the subsystem’s transport efficiency increases, while the entanglement between sites vanishes. Our results suggest that quantum discord is a manifestation of the ENAQT and highlight the importance of beyond-entanglement correlations in photosynthetic energy transport processes.


Life ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Radek Kaňa ◽  
Gábor Steinbach ◽  
Roman Sobotka ◽  
György Vámosi ◽  
Josef Komenda

Biological membranes were originally described as a fluid mosaic with uniform distribution of proteins and lipids. Later, heterogeneous membrane areas were found in many membrane systems including cyanobacterial thylakoids. In fact, cyanobacterial pigment–protein complexes (photosystems, phycobilisomes) form a heterogeneous mosaic of thylakoid membrane microdomains (MDs) restricting protein mobility. The trafficking of membrane proteins is one of the key factors for long-term survival under stress conditions, for instance during exposure to photoinhibitory light conditions. However, the mobility of unbound ‘free’ proteins in thylakoid membrane is poorly characterized. In this work, we assessed the maximal diffusional ability of a small, unbound thylakoid membrane protein by semi-single molecule FCS (fluorescence correlation spectroscopy) method in the cyanobacterium Synechocystis sp. PCC6803. We utilized a GFP-tagged variant of the cytochrome b6f subunit PetC1 (PetC1-GFP), which was not assembled in the b6f complex due to the presence of the tag. Subsequent FCS measurements have identified a very fast diffusion of the PetC1-GFP protein in the thylakoid membrane (D = 0.14 − 2.95 µm2s−1). This means that the mobility of PetC1-GFP was comparable with that of free lipids and was 50–500 times higher in comparison to the mobility of proteins (e.g., IsiA, LHCII—light-harvesting complexes of PSII) naturally associated with larger thylakoid membrane complexes like photosystems. Our results thus demonstrate the ability of free thylakoid-membrane proteins to move very fast, revealing the crucial role of protein–protein interactions in the mobility restrictions for large thylakoid protein complexes.


2021 ◽  
Author(s):  
Vincenzo Mascoli ◽  
Nicoletta Liguori ◽  
Lorenzo Cupellini ◽  
Eduard Elias ◽  
Benedetta Mennucci ◽  
...  

Carotenoids are essential constituents of plant light-harvesting complexes (LHCs), being involved in protein stability, light harvesting, and photoprotection. Unlike chlorophylls, whose binding to LHCs is known to require coordination of...


2019 ◽  
Vol 10 (42) ◽  
pp. 9650-9662 ◽  
Author(s):  
Felipe Cardoso Ramos ◽  
Michele Nottoli ◽  
Lorenzo Cupellini ◽  
Benedetta Mennucci

The spectral tuning of LH2 antenna complexes arises from H-bonding, acetyl torsion, and inter-chromophore couplings.


Science ◽  
2013 ◽  
Vol 340 (6139) ◽  
pp. 1448-1451 ◽  
Author(s):  
R. Hildner ◽  
D. Brinks ◽  
J. B. Nieder ◽  
R. J. Cogdell ◽  
N. F. van Hulst

1999 ◽  
Author(s):  
Carsten Tietz ◽  
Alexander Draebenstedt ◽  
Joerg Schuster ◽  
Joerg Wrachtrup

2015 ◽  
Vol 17 (38) ◽  
pp. 25629-25641 ◽  
Author(s):  
Xiaoqing Wang ◽  
Gerhard Ritschel ◽  
Sebastian Wüster ◽  
Alexander Eisfeld

We elucidate the difference between various parameter extraction methods and demonstrate sensitivity to molecular dynamics equilibration.


Sign in / Sign up

Export Citation Format

Share Document