Photocatalytic Degradation of Chloroform Using a New Type of Photo-Reactor

Author(s):  
Morten E. Simonsen ◽  
Erik G. Soegaard
2016 ◽  
Vol 187 ◽  
pp. 134-143 ◽  
Author(s):  
Xiao Zhao ◽  
Zhengqing Cai ◽  
Ting Wang ◽  
S.E. O’Reilly ◽  
Wen Liu ◽  
...  

2010 ◽  
Vol 113-116 ◽  
pp. 2021-2024 ◽  
Author(s):  
Wen Jie Zhang ◽  
Xin Sun ◽  
Bai Han Chen

Iron niobate photocatalyst as a new type of photocatalyst was prepared by solid-state reaction of Fe3O4 and Nb2O5 and its activity was evaluated using photocatalytic degradation of methyl orange. Preparation conditions such as calcination temperature and time, and irradiation time were investigated according to photocatalytic efficiencies. FeNb2O6 was produced during calcination below 700 oC and FeNbO4 was produced above 800 oC. Iron niobate with optimum activity could be prepared after calcination at 700 oC for 8 h when Fe:Nb molar ratio was 0.8:1. Methyl orange degradation rate was 72.7% after 180 min of irradiation at photocatalyst concentration of 4 g/l.


RSC Advances ◽  
2021 ◽  
Vol 11 (26) ◽  
pp. 15598-15607
Author(s):  
Sha Sha ◽  
Lei Zhang ◽  
Haijun Liu ◽  
Jingdi Chen ◽  
Yuju Che ◽  
...  

A new type of Ag3PO4/AgBr/hydroxyapatite photocatalyst was prepared from oyster shells, which showed high efficiency in the degradation of organic dyes.


2010 ◽  
Vol 156-157 ◽  
pp. 1327-1330
Author(s):  
Xu Hui Sun ◽  
Jia Qing Cheng ◽  
Lin Sun

In order to make full use of sunlight and improve photocatalytic degradation efficiency, a new rotary solar photocatalytic reactor with focus reflector was designed. The new type of solar photocatalytic reactor we designed solves such problems as shallow optical depth, small surface area, the need for aeration and agitation, insufficient contacting time or sunlight intensity in the photocatalytic reaction. It has the characteristics of cheap price and easy operation. Using focus reflector to increase the light intensity can improve decomposing efficiency. The paper also studied the method for the immobilization of the catalyst.


Author(s):  
Lucien F. Trueb

A new type of synthetic industrial diamond formed by an explosive shock process has been recently developed by the Du Pont Company. This material consists of a mixture of two basically different forms, as shown in Figure 1: relatively flat and compact aggregates of acicular crystallites, and single crystals in the form of irregular polyhedra with straight edges.Figure 2 is a high magnification micrograph typical for the fibrous aggregates; it shows that they are composed of bundles of crystallites 0.05-0.3 μ long and 0.02 μ. wide. The selected area diffraction diagram (insert in Figure 2) consists of a weak polycrystalline ring pattern and a strong texture pattern with arc reflections. The latter results from crystals having preferred orientation, which shows that in a given particle most fibrils have a similar orientation.


Author(s):  
T. Ichinokawa ◽  
H. Maeda

I. IntroductionThermionic electron gun with the Wehnelt grid is popularly used in the electron microscopy and electron beam micro-fabrication. It is well known that this gun could get the ideal brightness caluculated from the Lengumier and Richardson equations under the optimum condition. However, the design and ajustment to the optimum condition is not so easy. The gun has following properties with respect to the Wehnelt bias; (1) The maximum brightness is got only in the optimum bias. (2) In the larger bias than the optimum, the brightness decreases with increasing the bias voltage on account of the space charge effect. (3) In the smaller bias than the optimum, the brightness decreases with bias voltage on account of spreading of the cross over spot due to the aberrations of the electrostatic immersion lens.In the present experiment, a new type electron gun with the electrostatic and electromagnetic lens is designed, and its properties are examined experimentally.


Author(s):  
R. Sharma ◽  
B.L. Ramakrishna ◽  
N.N. Thadhani ◽  
D. Hianes ◽  
Z. Iqbal

After materials with superconducting temperatures higher than liquid nitrogen have been prepared, more emphasis has been on increasing the current densities (Jc) of high Tc superconductors than finding new materials with higher transition temperatures. Different processing techniques i.e thin films, shock wave processing, neutron radiation etc. have been applied in order to increase Jc. Microstructural studies of compounds thus prepared have shown either a decrease in gram boundaries that act as weak-links or increase in defect structure that act as flux-pinning centers. We have studied shock wave synthesized Tl-Ba-Cu-O and shock wave processed Y-123 superconductors with somewhat different properties compared to those prepared by solid-state reaction. Here we report the defect structures observed in the shock-processed Y-124 superconductors.


Author(s):  
G.D. Danilatos

Over recent years a new type of electron microscope - the environmental scanning electron microscope (ESEM) - has been developed for the examination of specimen surfaces in the presence of gases. A detailed series of reports on the system has appeared elsewhere. A review summary of the current state and potential of the system is presented here.The gas composition, temperature and pressure can be varied in the specimen chamber of the ESEM. With air, the pressure can be up to one atmosphere (about 1000 mbar). Environments with fully saturated water vapor only at room temperature (20-30 mbar) can be easily maintained whilst liquid water or other solutions, together with uncoated specimens, can be imaged routinely during various applications.


Sign in / Sign up

Export Citation Format

Share Document