Influence of Time Step Size and Convergence Criteria on Large Eddy Simulations with Implicit Time Discretization

Author(s):  
Michael Kornhaas ◽  
Dörte C. Sternel ◽  
Michael Schäfer
Author(s):  
Yuntae Lee ◽  
Susumu Teramoto ◽  
Takahiko Toki ◽  
Koji Okamoto

Abstract Large Eddy Simulation (LES) has already been widely applied for unsteady flow simulations (e.g., axial cascade simulation), showing its superiority in the case of turbulent flow fields. However, there are several obstacles in the practical use of LES as a cascade design tool for gas turbine engines. Several calculation parameters such as the inlet turbulence, spanwise extents, and many other boundary conditions, affect calculation results for LES simulation and can cause reliability problems. This study concentrates on investigating the effects of LES calculation parameters on the prediction of profile loss at high air inlet angle off-design condition. The LES flow field results were found to be sensitive to four parameters (i.e., inlet turbulence, spanwise domain extent, time step size, and outlet domain). The inlet turbulence affects the size of the laminar separation bubble, while the spanwise domain extent affects the velocity fluctuations of the wake in correspondence of the large-scale vortices shedding. The time step size affects the velocity fluctuations of the wake because of the number of times that the low-pass filter is applied. Finally, the outlet domain extent affects the whole calculation domain (from the leading edge to the wake). Overall, the results show that all four calculation parameters can change the flow characteristics, affecting the prediction of profile loss at off-design condition when using LES.


2013 ◽  
Vol 13 (4) ◽  
pp. 929-957 ◽  
Author(s):  
Craig Collins ◽  
Jie Shen ◽  
Steven M. Wise

AbstractWe present an unconditionally energy stable and uniquely solvable finite difference scheme for the Cahn-Hilliard-Brinkman (CHB) system, which is comprised of a Cahn-Hilliard-type diffusion equation and a generalized Brinkman equation mod-eling fluid flow. The CHB system is a generalization of the Cahn-Hilliard-Stokes model and describes two phase very viscous flows in porous media. The scheme is based on a convex splitting of the discrete CH energy and is semi-implicit. The equations at the implicit time level are nonlinear, but we prove that they represent the gradient of a strictly convex functional and are therefore uniquely solvable, regardless of time step size. Owing to energy stability, we show that the scheme is stable in the time and space discrete and norms. We also present an efficient, practical nonlinear multigrid method . comprised of a standard FAS method for the Cahn-Hilliard part, and a method based on the Vanka smoothing strategy for the Brinkman part . for solving these equations. In particular, we provide evidence that the solver has nearly optimal complexity in typical situations. The solver is applied to simulate spinodal decomposition of a viscous fluid in a porous medium, as well as to the more general problems of buoyancy- and boundary-driven flows.


2021 ◽  
Vol 88 (3) ◽  
Author(s):  
Yuyuan Yan ◽  
Bernard A. Egwu ◽  
Zongqi Liang ◽  
Yubin Yan

AbstractA continuous Galerkin time stepping method is introduced and analyzed for subdiffusion problem in an abstract setting. The approximate solution will be sought as a continuous piecewise linear function in time t and the test space is based on the discontinuous piecewise constant functions. We prove that the proposed time stepping method has the convergence order $$O(\tau ^{1+ \alpha }), \, \alpha \in (0, 1)$$ O ( τ 1 + α ) , α ∈ ( 0 , 1 ) for general sectorial elliptic operators for nonsmooth data by using the Laplace transform method, where $$\tau $$ τ is the time step size. This convergence order is higher than the convergence orders of the popular convolution quadrature methods (e.g., Lubich’s convolution methods) and L-type methods (e.g., L1 method), which have only $$O(\tau )$$ O ( τ ) convergence for the nonsmooth data. Numerical examples are given to verify the robustness of the time discretization schemes with respect to data regularity.


2017 ◽  
Vol 21 (5) ◽  
pp. 1408-1428 ◽  
Author(s):  
Xiaoling Liu ◽  
Chuanju Xu

AbstractThis paper is concerned with numerical methods for the Navier-Stokes-Nernst-Planck-Poisson equation system. The main goal is to construct and analyze some stable time stepping schemes for the time discretization and use a spectral method for the spatial discretization. The main contribution of the paper includes: 1) an useful stability inequality for the weak solution is derived; 2) a first order time stepping scheme is constructed, and the non-negativity of the concentration components of the discrete solution is proved. This is an important property since the exact solution shares the same property. Moreover, the stability of the scheme is established, together with a stability condition on the time step size; 3) a modified first order scheme is proposed in order to decouple the calculation of the velocity and pressure in the fluid field. This new scheme equally preserves the non-negativity of the discrete concentration solution, and is stable under a similar stability condition; 4) a stabilization technique is introduced to make the above mentioned schemes stable without restriction condition on the time step size; 5) finally we construct a second order finite difference scheme in time and spectral discretization in space. The numerical tests carried out in the paper show that all the proposed schemes possess some desirable properties, such as conditionally/unconditionally stability, first/second order convergence, non-negativity of the discrete concentrations, and so on.


2004 ◽  
Vol 01 (04) ◽  
pp. 747-768
Author(s):  
CHRISTIAN ROHDE ◽  
MAI DUC THANH

We construct approximate solutions of the initial value problem for dynamical phase transition problems via a variational scheme in one space dimension. First, we deal with a local model of phase transition dynamics which contains second and third order spatial derivatives modeling the effects of viscosity and surface tension. Assuming that the initial data are periodic, we prove the convergence of approximate solutions to a weak solution which satisfies the natural dissipation inequality. We note that this result still holds for non-periodic initial data. Second, we consider a model of phase transition dynamics with only Lipschitz continuous stress–strain function which contains a non-local convolution term to take account of surface tension. We also establish the existence of weak solutions. In both cases the proof relies on implicit time discretization and the analysis of a minimization problem at each time step.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
S. S. Ravindran

Micropolar fluid model consists of Navier-Stokes equations and microrotational velocity equations describing the dynamics of flows in which microstructure of fluid is important. In this paper, we propose and analyze a decoupled time-stepping algorithm for the evolutionary micropolar flow. The proposed method requires solving only one uncoupled Navier-Stokes and one microrotation subphysics problem per time step. We derive optimal order error estimates in suitable norms without assuming any stability condition or time step size restriction.


Author(s):  
Ethan Corle ◽  
Matthew Floros ◽  
Sven Schmitz

The methods of using the viscous vortex particle method, dynamic inflow, and uniform inflow to conduct whirl-flutter stability analysis are evaluated on a four-bladed, soft-inplane tiltrotor model using the Rotorcraft Comprehensive Analysis System. For the first time, coupled transient simulations between comprehensive analysis and a vortex particle method inflow model are used to predict whirl-flutter stability. Resolution studies are performed for both spatial and temporal resolution in the transient solution. Stability in transient analysis is noted to be influenced by both. As the particle resolution is refined, a reduction in simulation time-step size must also be performed. An azimuthal time step size of 0.3 deg is used to consider a range of particle resolutions to understand the influence on whirl-flutter stability predictions. Comparisons are made between uniform inflow, dynamic inflow, and the vortex particle method with respect to prediction capabilities when compared to wing beam-bending frequency and damping experimental data. Challenges in assessing the most accurate inflow model are noted due to uncertainty in experimental data; however, a consistent trend of increasing damping with additional levels of fidelity in the inflow model is observed. Excellent correlation is observed between the dynamic inflow predictions and the vortex particle method predictions in which the wing is not part of the inflow model, indicating that the dynamic inflow model is adequate for capturing damping due to the induced velocity on the rotor disk. Additional damping is noted in the full vortex particle method model, with the wing included, which is attributed to either an interactional aerodynamic effect between the rotor and the wing or a more accurate representation of the unsteady loading on the wing due to induced velocities.


Author(s):  
Jesús Cardenal ◽  
Javier Cuadrado ◽  
Eduardo Bayo

Abstract This paper presents a multi-index variable time step method for the integration of the equations of motion of constrained multibody systems in descriptor form. The basis of the method is the augmented Lagrangian formulation with projections in index-3 and index-1. The method takes advantage of the better performance of the index-3 formulation for large time steps and of the stability of the index-1 for low time steps, and automatically switches from one method to the other depending on the required accuracy and values of the time step. The variable time stepping is accomplished through the use of an integral of motion, which in the case of conservative systems becomes the total energy. The error introduced by the numerical integrator in the integral of motion during consecutive time steps provides a good measure of the local integration error, and permits a simple and reliable strategy for varying the time step. Overall, the method is efficient and powerful; it is suitable for stiff and non-stiff systems, robust for all time step sizes, and it works for singular configurations, redundant constraints and topology changes. Also, the constraints in positions, velocities and accelerations are satisfied during the simulation process. The method is robust in the sense that becomes more accurate as the time step size decreases.


Sign in / Sign up

Export Citation Format

Share Document