Modern Nuclear Fuel Cycles nuclear fuel cycle

Author(s):  
James S. Tulenko
2015 ◽  
Vol 08 ◽  
pp. 99-114 ◽  
Author(s):  
Florent Heidet ◽  
Nicholas R. Brown ◽  
Malek Haj Tahar

This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.


Author(s):  
Kimberly Gray ◽  
John Vienna ◽  
Patricia Paviet

In order to maintain the U.S. domestic nuclear capability, its scientific technical leadership, and to keep our options open for closing the nuclear fuel cycle, the Department of Energy, Office of Nuclear Energy (DOE-NE) invests in various R&D programs to identify and resolve technical challenges related to the sustainability of the nuclear fuel cycle. Sustainable fuel cycles are those that improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety and limit proliferation risk. DOE-NE chartered a Study on the evaluation and screening of nuclear fuel cycle options, to provide information about the potential benefits and challenges of nuclear fuel cycle options and to identify a relatively small number of promising fuel cycle options with the potential for achieving substantial improvements compared to the current nuclear fuel cycle in the United States. The identification of these promising fuel cycles helps in focusing and strengthening the U.S. R&D investment needed to support the set of promising fuel cycle system options and nuclear material management approaches. DOE-NE is developing and evaluating advanced technologies for the immobilization of waste issued from aqueous and electrochemical recycling activities including off-gas treatment and advanced fuel fabrication. The long-term scope of waste form development and performance activities includes not only the development, demonstration, and technical maturation of advanced waste management concepts but also the development and parameterization of defensible models to predict the long-term performance of waste forms in geologic disposal. Along with the finding of the Evaluation and Screening Study will be presented the major research efforts that are underway for the development and demonstration of waste forms and processes including glass ceramic for high-level waste raffinate, alloy waste forms and glass ceramics composites for HLW from the electrochemical processing of fast reactor fuels, and high durability waste forms for radioiodine.


Author(s):  
Yong Han Kim ◽  
Kun Jai Lee ◽  
Won Zin Oh

In order to show that the nuclear energy could be a clean energy, radioactive waste management, especially high level waste has to be successfully managed and also accepted by the public. As discussed, progressed and focused at GEN IV international project, reduction of long lived actinide source term and corresponding toxicity through transmutation process has been recognized as one possible solution to the problem and draw lots of attention these days and active R&D efforts are pursued and progressed worldwidely. Especially, much of interest has been initiated to the accelerator driven system (ADS) for the transmutation of the actinide as a subcritical reactors or combination to fast reactor (FR) to generate energy and transmute the HLW simultaneously in a cleaner and safer ways. This study compare and clarifies the roles and merits of the FR and ADS, which would be expected to be introduced into the future Korean nuclear fuel cycle partly, in view of environmental friendliness especially with the existing nuclear fuel cycle dominated by PWR in Korea. After selecting the most plausible and appropriate reactor strategy scenario, the mass flow balance of active radionuclides from ore to waste for several cases of advanced nuclear fuel cycle (where “advanced nuclear fuel cycle” means the nuclear fuel cycle with FR or ADS) is analyzed by computer code. Advanced nuclear fuel cycle with only FR or ADS, and with both FR and ADS were considered for this analysis. A spread sheet type of code, that compute material flow and some environmental friendliness indices chronologically, was developed and analyzed for the calculation. Some indices for the environmental friendliness (i.e. amount of actinide nuclides, radioactivity and radiotoxicity of them, and uranium resource requirement) for several types of advanced nuclear fuel cycles are analyzed comparing with those of once-through fuel cycle. According to the final results, it confirmed quantitatively that the advanced fuel cycle with FRs and ADSs would be one of the possible alternatives to relieve the burden of HLW waste management because those fuel cycle options might reduce the generation of the transuranic radionuclides by tens to hundreds times less compared to that of once-through fuel cycle. Especially advanced nuclear system combined with FR and ADS shows much better effects compared to not combined system. Resource utilization efficiency is also much upgraded high by the introduction of advanced fuel cycles with a significant high share of fast reactors (i.e. only a half amount of uranium can be consumed in case of introduction of breakeven type FR compared to once-through fuel cycle case.)


MRS Bulletin ◽  
2008 ◽  
Vol 33 (4) ◽  
pp. 338-340 ◽  
Author(s):  
Rodney C. Ewing

Every energy source has environmental impacts—positive and negative. Nuclear power is a carbon-free source of energy that can reduce CO2 emissions by displacing the use of fossil fuels. The present level of carbon displacement is approximately 0.5 gigatonnes of carbon per year (GtC/year), compared to the nearly 8 GtC/year emitted by the use of fossil fuels. However, there are three major negative environmental impacts of nuclear power: catastrophic accidents, nuclear weapons, and nuclear waste. The last two, weapons and waste, are directly tied to the type of nuclear fuel cycle (Figure 4 in the main nuclear article by Raj et al. in this issue). The different fuel cycles refect different strategies for the utilization of fssile nuclides, mainly 235U and 239Pu, and these different strategies have important implications for nuclear waste management and nuclear weapons proliferation.


2013 ◽  
Vol 7 (3) ◽  
pp. 209-219 ◽  
Author(s):  
R. Bogdanov ◽  
R. Kuznetsov ◽  
V. Epimahov ◽  
A. Titov ◽  
E. Prudnikov

Sign in / Sign up

Export Citation Format

Share Document