Energetics of Peptide and Protein Binding to Lipid Membranes

Author(s):  
William C. Wimley
2008 ◽  
Vol 15 (5) ◽  
pp. 346-356 ◽  
Author(s):  
A. J. Pérez-Berná ◽  
A. S. Veiga ◽  
M. A. R. B. Castanho ◽  
J. Villalaín

2017 ◽  
Author(s):  
Daniela Krüger ◽  
Jan Ebenhan ◽  
Kirsten Bacia

AbstractFluorescence Correlation Spectroscopy (FCS) has been previously used to investigate peptide and protein binding to lipid membranes, as it allows for very low amounts of sample, short measurement times and equilibrium binding conditions. Labeling only one of the binding partners however comes with certain drawbacks, as it relies on identifying binding events by a change in diffusion coefficient. Since peptide and protein aggregation can obscure specific binding and since non-stoichiometric binding necessitates the explicit choice of a statistical distribution for the number of bound ligands, we additionally label the liposomes and perform dual-color Fluorescence Cross-Correlation Spectroscopy (dcFCCS). We develop a theoretical framework showing that dcFCCS amplitudes allow calculation of the degree of ligand binding and the concentration of unbound ligand, leading to a binding model-independent binding curve. As the degree of labeling of the ligands does not factor into the measured quantities, it is permissible to mix labeled and unlabeled ligand, thereby extending the range of usable protein concentrations and accessible dissociation constantsKD. The total protein concentration, but not the fraction of labeled protein needs to be known. In this work, we apply our dcFCCS analysis scheme to Sar1p, a protein of the COPII complex, which binds ‘major-minor-mix’ liposomes. A Langmuir isotherm model yieldsKD= (2.1±1.1)μMas the single site dissociation constant. The dual-color FCCS framework presented here is highly versatile for biophysical analysis of binding interactions. It may be applied to many types of fluorescently labeled ligands and small diffusing particles, including nanodiscs and liposomes containing membrane protein receptors.


Author(s):  
Jeremias Sibold ◽  
Somayeh Ahadi ◽  
Daniel B. Werz ◽  
Claudia Steinem

Abstract Gb3 glycosphingolipids are the specific receptors for bacterial Shiga toxin. Whereas the trisaccharidic head group of Gb3 defines the specificity of Shiga toxin binding, the lipophilic part composed of sphingosine and different fatty acids is suggested to determine its localization within membranes impacting membrane organisation and protein binding eventually leading to protein internalisation. While most studies use Gb3 extracts, chemical synthesis provides a unique tool to access different tailor-made Gb3 glycosphingolipids. In this review, strategies to synthesize these complex glycosphingolipids are presented. Special emphasis is put on the preparation of Gb3 molecules differing only in their fatty acid part (saturated, unsaturated, α-hydroxylated and both, unsaturated and α-hydroxylated). With these molecules in hand, it became possible to investigate the phase behaviour of liquid ordered/liquid disordered supported membranes doped with the Gb3 species by means of fluorescence and atomic force microscopy. The results clearly highlight the influence of the different fatty acids of the Gb3 sphingolipids on the phase behaviour and the binding properties of Shiga toxin B subunits, even though the membranes were only doped with 5 mol% of the receptor lipid. To obtain fluorescent Gb3 derivatives, either fatty acid labelled Gb3 molecules or head group labelled ones were synthesized. These molecules enabled us to address the question, where the Gb3 sphingolipids are localized prior protein binding by means of fluorescence microscopy on giant unilamellar vesicles. The results again demonstrate that the fatty acid of Gb3 plays a pivotal role for the overall membrane organisation.


1997 ◽  
Vol 161 ◽  
pp. 437-442
Author(s):  
Salvatore Di Bernardo ◽  
Romana Fato ◽  
Giorgio Lenaz

AbstractOne of the peculiar aspects of living systems is the production and conservation of energy. This aspect is provided by specialized organelles, such as the mitochondria and chloroplasts, in developed living organisms. In primordial systems lacking specialized enzymatic complexes the energy supply was probably bound to the generation and maintenance of an asymmetric distribution of charged molecules in compartmentalized systems. On the basis of experimental evidence, we suggest that lipophilic quinones were involved in the generation of this asymmetrical distribution of charges through vectorial redox reactions across lipid membranes.


Author(s):  
Neng-Bo He ◽  
S.W. Hui

Monolayers and planar "black" lipid membranes have been widely used as models for studying the structure and properties of biological membranes. Because of the lack of a suitable method to prepare these membranes for electron microscopic observation, their ultrastructure is so far not well understood. A method of forming molecular bilayers over the holes of fine mesh grids was developed by Hui et al. to study hydrated and unsupported lipid bilayers by electron diffraction, and to image phase separated domains by diffraction contrast. We now adapted the method of Pattus et al. of spreading biological membranes vesicles on the air-water interfaces to reconstitute biological membranes into unsupported planar films for electron microscopic study. hemoglobin-free human erythrocyte membrane stroma was prepared by hemolysis. The membranes were spreaded at 20°C on balanced salt solution in a Langmuir trough until a surface pressure of 20 dyne/cm was reached. The surface film was repeatedly washed by passing to adjacent troughs over shallow partitions (fig. 1).


Author(s):  
S. W. Hui ◽  
T. P. Stewart

Direct electron microscopic study of biological molecules has been hampered by such factors as radiation damage, lack of contrast and vacuum drying. In certain cases, however, the difficulties may be overcome by using redundent structural information from repeating units and by various specimen preservation methods. With bilayers of phospholipids in which both the solid and fluid phases co-exist, the ordering of the hydrocarbon chains may be utilized to form diffraction contrast images. Domains of different molecular packings may be recgnizable by placing properly chosen filters in the diffraction plane. These domains would correspond to those observed by freeze fracture, if certain distinctive undulating patterns are associated with certain molecular packing, as suggested by X-ray diffraction studies. By using an environmental stage, we were able to directly observe these domains in bilayers of mixed phospholipids at various temperatures at which their phases change from misible to inmissible states.


Sign in / Sign up

Export Citation Format

Share Document