Generalized Mass Action System

2013 ◽  
pp. 816-816
Author(s):  
Eberhard O. Voit
Keyword(s):  
1980 ◽  
Vol 35 (3) ◽  
pp. 317-318 ◽  
Author(s):  
K.-D. Willamowski ◽  
O. E. Rössler

Abstract An open three-variable mass action kinetics is presented which exhibits chaotic behavior under numerical simulation. The elementary reactions of this system are at most of second order and satisfy the requirements of thermodynamics as long as the system is closed.


Author(s):  
Balázs Boros ◽  
Josef Hofbauer

AbstractWhereas the positive equilibrium of a planar mass-action system with deficiency zero is always globally stable, for deficiency-one networks there are many different scenarios, mainly involving oscillatory behaviour. We present several examples, with centers or multiple limit cycles.


1973 ◽  
Vol 30 (02) ◽  
pp. 381-392
Author(s):  
M Martin ◽  

SummaryThe plasminogen-streptokinase complex called “activator” was present in diluted plasma in the form of a largely dissociated mixture. More than ⅞ of the streptokinase and plasminogen molecules were available for further activator formation.The activator is probably a dissociated complex of the formulaStreptokinase + Plasminogen ⇄ Activator.The fact that an increase in activator concentration by x times is obtained by multiplying either the streptokinase content by the factor y or the plasminogen concentration by the same factor y would point to a kinetic effect along the lines of the mass action law.


2009 ◽  
Vol 15 (5) ◽  
pp. 578-597
Author(s):  
Marcello Farina ◽  
Sergio Bittanti

2021 ◽  
pp. 462379
Author(s):  
C.R. Bernau ◽  
R.C. Jäpel ◽  
J.W. Hübbers ◽  
S. Nölting ◽  
P. Opdensteinen ◽  
...  

2014 ◽  
Vol 11 (93) ◽  
pp. 20131100 ◽  
Author(s):  
Peter Banda ◽  
Christof Teuscher ◽  
Darko Stefanovic

State-of-the-art biochemical systems for medical applications and chemical computing are application-specific and cannot be reprogrammed or trained once fabricated. The implementation of adaptive biochemical systems that would offer flexibility through programmability and autonomous adaptation faces major challenges because of the large number of required chemical species as well as the timing-sensitive feedback loops required for learning. In this paper, we begin addressing these challenges with a novel chemical perceptron that can solve all 14 linearly separable logic functions. The system performs asymmetric chemical arithmetic, learns through reinforcement and supports both Michaelis–Menten as well as mass-action kinetics. To enable cascading of the chemical perceptrons, we introduce thresholds that amplify the outputs. The simplicity of our model makes an actual wet implementation, in particular by DNA-strand displacement, possible.


Author(s):  
Frederic Alberti

AbstractIt is well known that the classical recombination equation for two parent individuals is equivalent to the law of mass action of a strongly reversible chemical reaction network, and can thus be reformulated as a generalised gradient system. Here, this is generalised to the case of an arbitrary number of parents. Furthermore, the gradient structure of the backward-time partitioning process is investigated.


Sign in / Sign up

Export Citation Format

Share Document