An Unequal Diameter Twin Roll Caster for Aluminum Alloys Casting

Author(s):  
Toshio Haga ◽  
Masaaki Ikawa ◽  
Hisaki Watari ◽  
Shinji Kumai
2021 ◽  
Vol 880 ◽  
pp. 17-22
Author(s):  
Geng Yan Feng ◽  
Hisaki Watari ◽  
Mayumi Suzuki ◽  
Toshio Haga ◽  
Toru Shimizu

This study introduces the direct cladding of magnesium and aluminum alloys using a horizontal twin roll caster in one step. A horizontal twin roll caster can cast a Mg/Al clad strip with thickness exceeding 5mm at a roll speed of 8m/min in one step, which is difficult for a vertical twin roll caster. Therefore, it is possible to cast a thick clad strip with different melting point alloys using a horizontal twin roll caster at low speed. It is also possible to cast clad strips using as the overlay an alloy that has a higher melting point than that of the base strips. The thickness of the Mg/Al clad strip is 6.5mm, and the ratio of the Mg layer to the Al layer is 3:2. The surface of the clad strip is good, and there is no void between bonding interfaces. The mixing layer of the bonding interface is deeply related to the reduction rate. As the reduction rate increases, the mixing layer becomes more balanced and the thickness of the mixed layer decreases to 68μm. By observation of the interface of the cladded material, the mixed layer of the bonding interface is divided into two layers. It has been found the mixed layer near the Al layer has the highest hardness (up to 228HV), and the tensile shearing strength of the manufactured Mg/Al clad strip was 44MPa.


2014 ◽  
Vol 794-796 ◽  
pp. 772-777 ◽  
Author(s):  
Toshio Haga

Clad strip consisting of 5182 aluminum alloy and other aluminum alloys could be cast using a twin roll caster equipped with a scraper. This twin roll caster could carry out the strip casting and the bonding of the strips. The equipment, that was developed to prevent the contact between the bonding surface of the strip and oxidizing environment, was adopted. The developed equipment was a scraper. The 5182 strip could be bonded to other aluminum alloy strips by the effect of the scraper. Aluminum alloys for casting has poor formability, especially, bending ability is poor. The clad strip consisting of A356 casting aluminum alloy and 3003 wrought aluminum alloy was cast. 180 degree bending test was carried out on this clad strip. In the condition that the 3003 strip was outer side and A356 strip was inner side, the crack did not occur at the outer 3003 strip. In the deep drawing test or the clad strip, LDR (Limiting Drawing Ratio) was 1.8. These results mean that the casting aluminum alloy has ability to be used for the sheet forming, if the casting aluminum alloy is cladded with the wrought aluminum alloy.


2010 ◽  
Vol 443 ◽  
pp. 128-133 ◽  
Author(s):  
Ryoji Nakamura ◽  
Masakazu Sawai ◽  
Ryoji Nakamura ◽  
Takanori Yamabayashi ◽  
Shinji Kumai ◽  
...  

A roll caster, which could cast the three layers of clad strip directly from the molten metal, was designed, assembled and tested. The base strip was AA3003 aluminum alloy and overlay strips were AA4045 aluminum alloy. An unequal diameter twin roll caster was modified to cast clad strip. Two small rolls were amounted on a large roll. A scraper plate was used to prevent the mixture of the different kinds of melts. The casting of three strips and the connecting of strips could be operated by one roll caster. The interfaces between the strips were clear, and the mixture of the melt did not occur. The clad strip could be cold rolled without the annealing. The clad strip did not peel at connecting surface by the cold rolling and continuous bending. The strips were connected strictly. The casting speed was 20m/min, and this speed was much higher than the casting speed of the conventional twin roll caster for aluminum alloys.


2017 ◽  
Vol 893 ◽  
pp. 262-266 ◽  
Author(s):  
Toshio Haga ◽  
Kentaro Okamura ◽  
Hisaki Watari ◽  
Shinichi Nishida

Casting of clad strip consisting of Al-30vol%SiCp and 1070 aluminum alloy, and clad strip consisting of AM60 magnesium alloy and AZ121 magnesium alloy was carried out in an oxidizing atmosphere by two types of twin roll casters. One was the vertical type twin roll caster equipped with a scraper and the other was the melt drag type vertical type twin roll caster, both operating at a speed of 30 m/min and a roll load of 0.2 kN/mm. The clad strip of the aluminum alloys could be cast by both twin roll casters. The clad strip of the magnesium alloys could be cast only by the vertical caster equipped with a scraper. The clad strips were bonded strongly at the interface in spite of the high roll speed and the low roll load.


2011 ◽  
Vol 337 ◽  
pp. 556-559 ◽  
Author(s):  
Toshio Haga ◽  
Kenta Takahashi ◽  
Shinji Kumai ◽  
Hisaki Warari

Casting of a wire inserted strip was investigated using a downward melt drag twin roll caster. A nozzle was mounted to each roll. The wire was inserted between the lower and upper strip. Effect of use of two nozzles on the insertion of the wire was investigated. The insertion of the wire by the two nozzles was easier than one nozzle. The surfaces of the wire inserted strip cast using two nozzles was more sound than that cast using one nozzle. The position of the wire at thickness direction was almost center. When different aluminum alloys were poured from an upper nozzle and from a lower nozzle, a wire inserted clad strip could be cast.


2012 ◽  
Vol 3 (4) ◽  
pp. 419-424 ◽  
Author(s):  
Toshio Haga ◽  
Shinji Kumai ◽  
Hisaki Watari

2010 ◽  
Vol 139-141 ◽  
pp. 477-480
Author(s):  
Ryoji Nakamura ◽  
Shuya Hanada ◽  
Shinji Kumai ◽  
Hisaki Watari

An inline hot rolling was operated on 5182 aluminum alloy strip cast using a vertical type high speed caster (VHSTRC) at the speed of 60 m/min. A porosity existing at center line of the thickness and a ripple mark on the surface, these are typical defects of the strip cast by the VHSTRC, could be improved by the inline rolling. The rolling speed was as same as the roll-casting-speed of 60m/min. The temperature of the strip, when the inline rolling was operated, was 450oC. The reduction of the strip of the inline rolling was 35%.


2015 ◽  
Vol 772 ◽  
pp. 250-256 ◽  
Author(s):  
Hideto Harada ◽  
Shin Ichi Nishida ◽  
Mayumi Suzuki ◽  
Hisaki Watari ◽  
T. Haga

This paper describes direct cladding of magnesium (Mg) and aluminum (Al) alloys using a tandem horizontal twin roll caster that has three pairs of upper and lower rolls. Manufacturing conditions that are appropriate for fabricating Al/Mg and Al/Mg/Al cladded material were investigated. The surface condition of the cladded cast strip was examined. An electron probe micro analyzer was used to observe the interface between Al alloy and Mg alloy. The thickness of the mixed layer of Al and Mg alloy was 15μm, and how the materials were connected was clarified. Microscopic observation and backscattered electron analysis were used to investigate the cladding mechanisms of the Al and Mg alloy layers. Average hardness was determined using the Vickers hardness test at the Al layer and at the diffused layer between Mg and Al alloys. Cladding of Al/Mg alloy and A/Mg/Al alloy was possible using a tandem twin-roll caster. In addition, Al3Mg2 and Al12Mg17 phase precipitation at the interface of the Al and Mg alloys was confirmed during direct cladding from molten metals.


2018 ◽  
Vol 773 ◽  
pp. 171-178
Author(s):  
Toshio Haga ◽  
Kentaro Okamura ◽  
Hisaki Warari ◽  
Shinichi Nishida

This paper shows improvements made to a vertical type tandem twin roll caster and the appropriate casting conditions necessary to cast three-layer clad strips, the base strip of which has a lower solidification temperature than the overlay strip. In experiments, 4045 aluminum alloy was used for the base strip and 3003 aluminum alloy was used for the overlay strips. The roll speed was 30 m/min. By connecting the overlay strips to the base strip one at a time and cooling the base strip to between 450 and 530°C after applying the first overlay strip, a sound three-layer clad strip – defined as one in which the interfaces between strips are clear and do not separate during bending-to-failure tests – could be cast. The tensile shear testing between the base and second overlay strip was improved as the base-strip temperature was increased to 450-530°C range.


Sign in / Sign up

Export Citation Format

Share Document