Programming Planners with Flexible Architectures

Author(s):  
Alessandro Cimatti ◽  
Paolo Traverso ◽  
Luca Spalazzi
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Sevag Kaladchibachi ◽  
Fabian Fernandez

Circadian timekeeping can be reset by brief flashes of light using stimulation protocols thousands of times shorter than those previously assumed to be necessary for traditional phototherapy. These observations point to a future where flexible architectures of nanosecond-, microsecond-, and millisecond-scale light pulses are compiled to reprogram the brain’s internal clock when it has been altered by psychiatric illness or advanced age. In the current review, we present a chronology of seminal experiments that established the synchronizing influence of light on the human circadian system and the efficacy of prolonged bright-light exposure for reducing symptoms associated with seasonal affective disorder. We conclude with a discussion of the different ways that precision flashes could be parlayed during sleep to effect neuroadaptive changes in brain function. This article is a contribution to a special issue onCircadian Rhythms in Regulation of Brain Processes and Role in Psychiatric Disorderscurated by editors Shimon Amir, Karen Gamble, Oliver Stork, and Harry Pantazopoulos.


VLSI Design ◽  
1996 ◽  
Vol 4 (4) ◽  
pp. 293-307
Author(s):  
Kalapi Roy ◽  
Bingzhong (David) Guan ◽  
Carl Sechen

Field Programmable Gate Arrays (FPGAs) have a pre-defined chip boundary with fixed cell locations and routing resources. Placement objectives for flexible architectures (e.g., the standard cell design style) such as minimization of chip area do not reflect the primary placement goals for FPGAs. For FPGAs, the layout tools must seek 100% routability within the architectural constraints. Routability and congestion estimates must be made directly based on the demand and availability of routing resources for detailed routing of the particular FPGA. We. present a hierarchical placement approach consisting of two phases: a global placement phase followed by a detailed placement phase. The global placement phase minimizes congestion estimates of the global routing regions and satisfies all constraints at a coarser level. The detailed placer seeks to maximize the routability of the FPGA by considering factors which cause congestion at the detailed routing level and to precisely satisfy all of the constraints. Despite having limited knowledge about the gate level architectural details, we have achieved a 90%reduction in the number of unrouted nets in comparison to an industrial tool (the only other tool) developed specifically for this architecture.


Author(s):  
Andre´ Laurens

Balloons are long-time known space vehicles for science missions and technology in-flight experiments, with instruments that need out-of-atmosphere or in-situ measurements, thus being complementary to the satellite. They carry micro (few hundred grams) to mega (few tons) payloads, but all of them require micro cost, short development, multiple flights. Among the big ones, CNES stabilised gondolas are versatile space platforms used to fly science instruments mainly coming for aeronomy and astrophysics communities, and requiring stabilisation and pointing capabilities, analogous to satellite attitude control subsystems. For them, cost and development constraints cannot be met without highly flexible architectures and off-the-shelf components. In order to increase gondola flexibility to new missions (or adaptability to mission evolutions), new hardware and software solution have been studied for control & command, including stabilisation and pointing functions. Promoted technologies are those of industrial computers, ground networks, free software and, over all, Ada language, for they are open, standard, powerful, low-cost and long-lasting solutions. After a brief description of domain-oriented characteristics of the stabilised gondola control & command, this paper introduces the various technologies and main design principles proposed to meet system-level goals. Then focus is put on on-board architectures: full Ada95 real-time distributed applications on an Ethernet-IP LAN of industrial PCs running Linux, and describes the prototyping work and preliminary development done to ensure feasibility. The paper then discusses the applicability of such solutions to global, ground-to-board, distributed control & command applications, through an IP-based telemetry & telecommand link, such as the one under development in CNES for balloon systems. As a conclusion, this paper shows how adoption of these technologies for other space programs such as satellite platforms and payloads may change design, development costs, duration and organisation, as well as it may open new ways in ground-to-board communication and spacecraft operation.


2016 ◽  
Vol 15 (1) ◽  
pp. 31-42 ◽  
Author(s):  
Hamza Bendaoudi ◽  
Farida Cheriet ◽  
Ashley Manraj ◽  
Houssem Ben Tahar ◽  
J. M. Pierre Langlois

Author(s):  
Nikhilesh Dholakia ◽  
Nir Kshetri

This chapter presents a comparative view of e-business systems designed to extend the benefits of e-business to the poor demographic segments of the developing world and to reach populations that are on the “wrong side of the digital divide.” Four such systems are selected: the Global Trade Point Network (GTPN) of the United Nations, Alcatel Telemedicine Network, Little Intelligent Communities (LINCOS), and Johns Hopkins International’s (JHI) Telemedicine Network. The four networks are compared across various network architecture dimensions. Our analysis indicates that LINCOS offers reduced capital cost, flexible architectures, and at the same time access to worldwide information systems, and hence has the highest potential to reach effectively the most excluded population in developing countries. Collaborations among technology marketers, national governments and international agencies are needed to identify the needs of the digitally excluded population and select appropriate architectures to serve the needs.


Author(s):  
Nikhilesh Dholakia ◽  
Nir K. Kshetri

This chapter presents a comparative view of e-business systems designed to extend the benefits of e-business to the poor demographic segments of the developing world and to reach populations that are on the “wrong side of the digital divide.” Four such systems are selected: the Global Trade Point Network (GTPN) of the United Nations, Alcatel Telemedicine Network, Little Intelligent Communities (LINCOS), and Johns Hopkins International’s (JHI) Telemedicine Network. The four networks are compared across various network architecture dimensions. Our analysis indicates that LINCOS offers reduced capital cost, flexible architectures, and at the same time access to worldwide information systems, and hence has the highest potential to reach effectively the most excluded population in developing countries. Collaborations among technology marketers, national governments and international agencies are needed to identify the needs of the digitally excluded population and select appropriate architectures to serve the needs.


Sign in / Sign up

Export Citation Format

Share Document