Mechanics of Elastic Stress Transfer

Author(s):  
Kheng Lim Goh
2005 ◽  
Vol 272 (1575) ◽  
pp. 1979-1983 ◽  
Author(s):  
K.L Goh ◽  
J.R Meakin ◽  
R.M Aspden ◽  
D.W.L Hukins

Collagen fibrils provide tensile reinforcement for extracellular matrix. In at least some tissues, the fibrils have a paraboloidal taper at their ends. The purpose of this paper is to determine the implications of this taper for the function of collagen fibrils. When a tissue is subjected to low mechanical forces, stress will be transferred to the fibrils elastically. This process was modelled using finite element analysis because there is no analytical theory for elastic stress transfer to a non-cylindrical fibril. When the tissue is subjected to higher mechanical forces, stress will be transferred plastically. This process was modelled analytically. For both elastic and plastic stress transfer, a paraboloidal taper leads to a more uniform distribution of axial tensile stress along the fibril than would be generated if it were cylindrical. The tapered fibril requires half the volume of collagen than a cylindrical fibril of the same length and the stress is shared more evenly along its length. It is also less likely to fracture than a cylindrical fibril of the same length in a tissue subjected to the same mechanical force.


1998 ◽  
Vol 103 (B10) ◽  
pp. 24487-24504 ◽  
Author(s):  
Concetta Nostro ◽  
Ross S. Stein ◽  
Massimo Cocco ◽  
Maria Elina Belardinelli ◽  
Warner Marzocchi

2021 ◽  
Vol 9 ◽  
Author(s):  
Tom Kettlety ◽  
James P. Verdon

We investigate the physical mechanisms governing the activation of faults during hydraulic fracturing. Recent studies have debated the varying importance of different fault reactivation mechanisms in different settings. Pore pressure increase caused by injection is generally considered to be the primary driver of induced seismicity. However, in very tight reservoir rocks, unless a fracture network exists to act as a hydraulic conduit, the rate of diffusion may be too low to explain the spatio-temporal evolution of some microseismic sequences. Thus, elastic and poroelastic stress transfer and aseismic slip have been invoked to explain observations of events occurring beyond the expected distance of a reasonable diffusive front. In this study we use the high quality microseismic data acquired during hydraulic fracturing at the Preston New Road (PNR) wells, Lancashire, UK, to examine fault triggering mechanisms. Injection through both wells generated felt induced seismicity—an ML 1.6 during PNR-1z injection in 2018 and an ML 2.9 during PNR-2 in 2019—and the microseismic observations show that each operation activated different faults with different orientations. Previous studies have already shown that PNR-1z seismicity was triggered by a combination of both direct hydraulic effects and elastic stress transfer generated by hydraulic fracture opening. Here we perform a similar analysis of the PNR-2 seismicity, finding that the PNR-2 fault triggering was mostly likely dominated by the diffusion of increased fluid pressure through a secondary zone of hydraulic fractures. However, elastic stress transfer caused by hydraulic fracture opening would have also acted to promote slip. It is significant that no microseismicity was observed on the previously activated fault during PNR-2 operations. This dataset therefore provides a unique opportunity to estimate the minimum perturbation required to activate the fault. As it appears that there was no hydraulic connection between them during each stimulation, any perturbation caused to the PNR-1z fault by PNR-2 stimulation must be through elastic or poroelastic stress transfer. As such, by computing the stress transfer created by PNR-2 stimulation onto the PNR-1z fault, we are able to approximate the minimum bound for the required stress perturbation: in excess of 0.1 MPa, orders of magnitude larger than stated estimates of a generalized triggering threshold.


2021 ◽  
Author(s):  
Samuel Doyle ◽  
Bryn Hubbard ◽  
Poul Christoffersen ◽  
Robert Law ◽  
Duncan Hewitt ◽  
...  

Subglacial hydrology modulates basal motion but remains poorly constrained, particularly for soft-bedded Greenlandic outlet glaciers. Here, we report detailed measurements of the response of subglacial water pressure to the connection and drainage of adjacent water-filled boreholes drilled through kilometre-thick ice on Sermeq Kujalleq (Store Glacier). These measurements provide evidence for elastic gap opening at the ice-sediment interface, Darcian flow through the sediment layer, and the forcing of water pressure in hydraulically-isolated cavities by elastic stress transfer. We observed a small pressure drop followed by a large pressure rise in response to the connection of an adjacent borehole, consistent with the propagation of a flexural wave within the ice and underlying deformable sediment. We interpret the delayed pressure rise as evidence of no pre-existing conduit and the progressive decrease in hydraulic transmissivity as the closure of a narrow < 1.5 mm gap opened at the ice-sediment interface, and a reversion to Darcian flow through the sediment layer with a hydraulic conductivity of ≤10-6 m. We suggest that gap opening at the ice-sediment interface deserves further attention as it will occur naturally in response to the rapid pressurisation of water at the bed.


Sign in / Sign up

Export Citation Format

Share Document