Cell Cloning

1994 ◽  
pp. 143-151 ◽  
Author(s):  
Bernice M. Martin
Keyword(s):  
2013 ◽  
Vol 16 (3) ◽  
pp. 593-599 ◽  
Author(s):  
J. Opiela ◽  
M. Samiec

Abstract The efficiency of somatic cell cloning (somatic cell nuclear transfer; SCNT) as well as in vitro fertilization/in vitro embryo production (IVF/IVP) in mammals stay at relatively same level for over a decade. Despite plenty of different approaches none satisfactory break-through took place. In this article, we briefly summarize the implementation of mesenchymal stem cells (MSCs) for experimental embryology. The advantages of using MSCs as nuclear donors in somatic cell cloning and in vitro embryo culture are described. The description of results obtained with these cells in mammalian embryo genomic engineering is presented.


2010 ◽  
Vol 37 (9) ◽  
pp. 960-966 ◽  
Author(s):  
Jie CHEN ◽  
Dong-Jie LI ◽  
Cui ZHANG ◽  
Ning LI ◽  
Shi-Jie LI

1979 ◽  
Vol 150 (3) ◽  
pp. 548-563 ◽  
Author(s):  
C J Paige ◽  
P W Kincade ◽  
M A Moore ◽  
G Lee

The relative ability of various precursors to generate functional B cells in vivo was assessed by transferring normal, chromosomally-marked CBA/H-T6T6 cells to irradiated or unirradiated immunodeficient CBA/N mice. Emergence of donor-derived B cells was monitored by means of a B-cell cloning assay (in which CBA/N cells are inactive), and by karyotpic analysis of lymphoid, myeloid, and stem cell metaphases. Grafts of lymph node, spleen, anti-mu surface immunoglobin suppressed bone marrow, sIg+ cell-depleted marrow, normal marrow, fetal liver, and yolk sac suggest: (a) there is little self-renewal of sIg+ B cells in these models; (b) pre-committed cells have extensive proliferative/differentiative potential and at least initially contribute most of the newly-formed B cells; (c) populations or pre-B cells obtained from various sources differ in their regenerative ability; (d) CBA/N mice are deficient in a category of pre-B cells which are found in fetal liver; and (e) selective B-cell chimerism results from grafting of unirradiated CBA/N mice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Julia Wegner ◽  
Thomas Zillinger ◽  
Thais Schlee-Guimaraes ◽  
Eva Bartok ◽  
Martin Schlee

AbstractAntigen-presenting myeloid cells like monocytes detect invading pathogens via pattern recognition receptors (PRRs) and initiate adaptive and innate immune responses. As analysis of PRR signaling in primary human monocytes is hampered by their restricted expandability, human monocyte models like THP-1 cells are commonly used for loss-of-function studies, such as with CRISPR-Cas9 editing. A recently developed transdifferentiation cell culture system, BLaER1, enables lineage conversion from malignant B cells to monocytes and was found superior to THP-1 in mimicking PRR signaling, thus being the first model allowing TLR4 and inflammasome pathway analysis. Here, we identified an important caveat when investigating TLR4-driven signaling in BLaER1 cells. We show that this model contains glycosylphosphatidylinositol (GPI) anchor-deficient cells, which lack CD14 surface expression when differentiated to monocytes, resulting in diminished LPS/TLR4 but not TLR7/TLR8 responsiveness. This GPI anchor defect is caused by epigenetic silencing of PIGH, leading to a random distribution of intact and PIGH-deficient clones after single-cell cloning. Overexpressing PIGH restored GPI-anchored protein (including CD14) expression and LPS responsiveness. When studying CD14- or other GPI-anchored protein-dependent pathways, researchers should consider this anomaly and ensure equal GPI-anchored protein expression when comparing cells that have undergone single-cell cloning, e. g. after CRISPR-Cas9 editing.


2015 ◽  
Vol 75 (10) ◽  
pp. 1866-1875 ◽  
Author(s):  
Elisa Corsiero ◽  
Michele Bombardieri ◽  
Emanuela Carlotti ◽  
Federico Pratesi ◽  
William Robinson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document