Simulation of production metal cutting Processes

Author(s):  
Avner Friedman
PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xialong Ye ◽  
Juan Manuel Rodríguez Prieto ◽  
Ralf Müller

2021 ◽  
Author(s):  
Hui Liu ◽  
Markus Meurer ◽  
Daniel Schraknepper ◽  
Thomas Bergs

Abstract Cutting fluids are an important part of today's metal cutting processes, especially when machining aerospace alloys. They offer the possibility to extend tool life and improve cutting performance. However, the equipment and handling of cutting fluids also raises manufacturing costs. To reduce the negative impact of the high cost of cutting fluids, cooling systems and strategies are constantly being optimized. In most existing works, the influences of different cooling strategies on the relevant process parameters, such as tool wear, cutting forces, chip breakage, etc., are empirically investigated. Due to the limitations of experimental methods, analysis and modeling of the working mechanism has so far only been carried out at a relatively abstract level. For a better understanding of the mechanism of cutting fluids, a thermal coupled two-dimensional simulation approach for the orthogonal cutting process was developed in this work. This approach is based on the Coupled Eulerian Lagrangian (CEL) method and provides a detailed investigation of the cutting fluid’s impact on chip formation and tool temperature. For model validation, cutting tests were conducted on a broaching machine. The simulation resolved the fluid behavior in the cutting area and showed the distribution of convective cooling on the tool surface. This work demonstrates the potential of CEL based cutting fluid simulation, but also pointed out the shortcomings of this method.


2002 ◽  
Author(s):  
Robert Gabriel ◽  
Klaus Schneider ◽  
Jürgen Stichling ◽  
Jens Hesselbach

2013 ◽  
Vol 274 ◽  
pp. 249-252
Author(s):  
Zhi Xin Wang ◽  
Yong Kui Han ◽  
Yong Qiu Chen

Many metal-manufacturing industries include oxyfuel gas cutting among their manufacturing processes because cutting was often used in metal-cutting processes, specifically in the large castings and forgings and the fabrication of pressure vessels. The oxyfuel gas cutting process uses controlled chemical reactions to remove preheated metal by rapid oxidation in a stream of pure oxygen. Previous research has demonstrated microstructure in heat-affected zone varied depending on the gas used for the combustion as well as the cutting speed (Vc) used during the process. In this research, 34CrNiMo6 steel of 900 mm in thickness and 45 carbon steel of 450 mm in thickness were cut using an oxygen-propane flame cutting process. Then, macroscopic morphology and microstructure test were done to analyze the influence of the thickness of cutting cross-section. The results showed, in general, the width of heat-affected zone increased with the thickness of cutting cross-section. Also, it was demonstrated that heat-affected zone in the bottom and top section was wider than others.


Author(s):  
Alexandra Rodkina ◽  
Marian Wiercigroch

Abstract The dynamics of a nonlinear cutting process in the presence of random noise is defined and investigated. This approach is adequate for a wide range of models describing the orthogonal metal cutting processes by a single-degree-of-freedom oscillator, where the nonlinearity comes from the cutting force in form of a variable resistance force. The method of Lyapunov–Krasovskii functional was adopted to analyze the necessary conditions for a stable operation. The conditions ensuring an asymptotic stability in the presence of random noises are established.


Author(s):  
Greg Pasken ◽  
J. Ma ◽  
Muhammad P. Jahan ◽  
Shuting Lei

Abstract The most common problem when machining titanium using traditional metal cutting processes is that tools rapidly wear out and need to be replaced. This study examines the ability of a pure water jet to machine Ti-6Al-4V via simulations using ABAQUS’s Smoothed Particle Hydrodynamics (SPH). These simulations are then validated experimentally at two pressures, 138 MPa and 317 MPa. Using a Maxiem water jet built by Omax, experiments are conducted by creating a series of 5 lines that are 5 inches (127 mm) long placed 0.5 inches (12.7 mm) apart on a 1 mm thick Ti-6Al-4V workpiece. Predictive modeling is also conducted using the two additional pressures 400 MPa and 621 MPa as well as three orifice diameters 0.254 mm, 0.3556 mm, and 0.4572 mm. The simulations are validated at both pressures and had a percent error less than 2.6% which were within the standard deviation of the experimental results. The predictive modeling indicates that the pressures above 317 MPa create a near identical percent increase from the orifice diameter but the kerf has a more noticeable decrease in width of cut as the pressure increases. The 138 MPa has the smoothest surface profile compared to the other pressures. The volume of removed material decreases as the pressure increases but the material removal rate (MRR) increases as the pressure increases. This is due to the velocity of the water increasing as the pressure increases causing a lower run time. The 621 MPa is the best pressure to machine Ti-6Al-4V as it has a better MRR than the other pressures used in the predictive modelling.


Author(s):  
Mariyeh Moradnazhad ◽  
Hakki Ozgur Unver

Manufacturing processes are among the most energy intensive on earth. As negative ecological and economic impacts increase, reducing energy consumption is becoming critically important. In this article, a comprehensive overview of energy-saving strategies and opportunities for increasing energy efficiency in manufacturing operations is presented, with a focus on metal cutting processes. The issues and approaches involved in energy efficiency of machine tools and machining operations are reported in the literature and a structured research methodology is proposed for this purpose including prediction and modelling of machine energy consumption, determining the relationship between process energy consumption and process variables for material removal processes and optimization of cutting parameters in order to reduce energy consumption. Numerous techniques for increasing energy efficiency in manufacturing processes are identified and summarized, strengths and weaknesses of previous studies are discussed and potential avenues for future research are suggested.


Sign in / Sign up

Export Citation Format

Share Document