Numerical Simulation and Experimental Validation of Pure Water Jet Machining of Ti-6Al-4V

Author(s):  
Greg Pasken ◽  
J. Ma ◽  
Muhammad P. Jahan ◽  
Shuting Lei

Abstract The most common problem when machining titanium using traditional metal cutting processes is that tools rapidly wear out and need to be replaced. This study examines the ability of a pure water jet to machine Ti-6Al-4V via simulations using ABAQUS’s Smoothed Particle Hydrodynamics (SPH). These simulations are then validated experimentally at two pressures, 138 MPa and 317 MPa. Using a Maxiem water jet built by Omax, experiments are conducted by creating a series of 5 lines that are 5 inches (127 mm) long placed 0.5 inches (12.7 mm) apart on a 1 mm thick Ti-6Al-4V workpiece. Predictive modeling is also conducted using the two additional pressures 400 MPa and 621 MPa as well as three orifice diameters 0.254 mm, 0.3556 mm, and 0.4572 mm. The simulations are validated at both pressures and had a percent error less than 2.6% which were within the standard deviation of the experimental results. The predictive modeling indicates that the pressures above 317 MPa create a near identical percent increase from the orifice diameter but the kerf has a more noticeable decrease in width of cut as the pressure increases. The 138 MPa has the smoothest surface profile compared to the other pressures. The volume of removed material decreases as the pressure increases but the material removal rate (MRR) increases as the pressure increases. This is due to the velocity of the water increasing as the pressure increases causing a lower run time. The 621 MPa is the best pressure to machine Ti-6Al-4V as it has a better MRR than the other pressures used in the predictive modelling.

Author(s):  
Greg Pasken ◽  
J. Ma ◽  
Muhammad P. Jahan ◽  
Shuting Lei

Abstract Aluminum, known for its low density and its ability to resist corrosion through passivation, is vitally important to the aerospace industry, transportation, and building industries. The most common problem when machining titanium using traditional metal cutting processes is that tools rapidly wear out and need to be replaced since the variation of chip thickness, high heat stress, high-pressure loads, spring back, and residual stress result in higher tool wear and worse machined surface integrity. Thus, a technique that allows high precision machining of titanium that preserves the integrity of the machined material, reduces tool wear or even eliminates tooling entirely is an important advance. This study examines the ability to machine Al 6061-T6 and Ti-6Al-4V using a pulsed water jet by simulation using ABAQUS Smoothed Particle Hydrodynamics (SPH). The aluminum results showed that between the three diameters the 0.4572 mm orifice is a better choice based upon the percent increase from the orifice diameter; but based off of the kerf, the 0.3556 mm is the better choice. The results show that the 621 MPa has the highest MRR for Al 6061-T6, 232.1 mm3/s. For the four pressure simulations for the titanium, the 138 MPa pressure has the smoothest surface. Even though the volume removed decreased as the pressures increased for the titanium, the MRR increased due to the shorter machining times with 621 MPa pressure having the second highest MRR, 170.051 mm3/s. The results show that overall the 621 MPa is the best choice from the parameters chosen for machining Al 6061-T6 and Ti-6Al-4V.


1995 ◽  
Vol 117 (3) ◽  
pp. 331-339 ◽  
Author(s):  
R. Kovacevic ◽  
C. Cherukuthota ◽  
R. Mohan

During machining, due to relative motion between tool and workpiece, severe thermal/frictional conditions exist at the tool-chip interface. Metal machining processes can be more efficient in terms of increasing the metal removal rate and lengthening tool life, if the thermal/frictional conditions are controlled effectively. A high pressure waterjet assisted coolant/lubricant system that can be used in conjunction with rotary tools (e.g., face milling) is developed here. The performance of this system is evaluated in terms of cutting force, surface quality, tool wear, and chip shape. The improvement in the effectiveness of the developed system with increase in water pressure and orifice diameter is also investigated. Stochastic modeling of the surface profile is performed to obtain more information about the role of waterjet in the machining process.


Author(s):  
Greg Pasken ◽  
Jianfeng Ma ◽  
Muhammad P. Jahan ◽  
Shuting Lei

Abstract Pure water jets are not as effective as abrasive water jets for cutting hard materials at large scales. Pure water jets can have kerfs as small as 0.076 mm, which is approximately the width of a human hair. This allows for small detailed cuts on workpiece material [1]. Research into using pure water jet to machine aluminum at small scales is important, as this will allow small scale and precision machining of the work piece material. At micro scales, water jet cutting with typical abrasives is not possible because the abrasive particles are typically in the micron range which is around the size of the cut. At small scales a pure water jet is more effective than abrasive water jet machining, as special nanometer size abrasives would be needed at small scales. A pure water jet only needs the correct size orifice to conduct machining at the small scale. These are the reasons why this study uses a pure water jet to conduct small scale machining of aluminum. This study investigates the use of ABAQUS’s Smoothed Particle Hydrodynamics to simulate pure water jet machining of metals and compares the simulation results of a water jet machining of Al6061-T6 to experimental results using the same material. The simulation results compare favorably to experimental results with only 2.81% error in the width of the cut. The predictive FEM modeling is then conducted for other combinations of machining parameters (orifice diameter and inlet pressure). It is found that orifice diameter and inlet pressure have substantial influence on the width and depth of cut. The results of the study open new possibilities for machining metals using a pure water jet at the micrometer scale and at smaller scales.


PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xialong Ye ◽  
Juan Manuel Rodríguez Prieto ◽  
Ralf Müller

2005 ◽  
Vol 28 (10) ◽  
pp. 1018-1024 ◽  
Author(s):  
G. Giannini ◽  
M. Valbonesi ◽  
F. Morelli ◽  
P. Carlier ◽  
M.C. De Luigi ◽  
...  

Patients with extremely high triglyceride levels and associated lipemia are at high risk for acute pancreatitis. Two factors can increase triglyceride-rich lipoproteins; one is overproduction and other is a defect in clearance. Either mechanism can cause hypertriglyceridemia and both may exist simultaneously. Causes can be either primary or secondary. Plasmapheresis is efficacious for severe hypertryceridemia in patients who have not responded to previous therapies. We have treated 15 cases of hypertrygliceridemia complicating the course of patients receiving Cyclosporin A after bone marrow transplantation. Five patients were treated with plasmapheresis, the other ten with cascade filtration. The removal rate for triglycerides was 58.0% for patients treated by cascade filtration and 63.5% for patients treated by plasmapheresis. The removal rates for triglycerides were low possibly as a consequence of early saturation of the filter.


2015 ◽  
Vol 1092-1093 ◽  
pp. 972-975
Author(s):  
Jing Yang

According to the problems exist in cyclic utilization of washing wastewater, the coagulation tests utilizing ferric trichloride (FeCl3), alums, poly aluminium chloride (PAC) and polyacrylamide (PAM) are studied, respectively. Experimental results show that PAC was much better than the other coagulants in the removal of LAS and chroma as a single coagulant. Cast 2.5mL PAC(10%) into quantitative washing wastewater, the removal rate of LAS and chroma reach 82.5% and 87.8%, respectively. When mix the every two kinds of coagulants, maintaining the same total amount of coagulant to 2.5mL, cast1.0mL PAC(10%) and 1.5mL alum (10%) into washing wastewater ,the removal rate of LAS and chroma reach 84.1% and 90.0%, respectively.


Author(s):  
Zhichao Geng ◽  
Ping Zhou ◽  
Lei Meng ◽  
Ying Yan ◽  
Dongming Guo

Abstract Lapping has a history of hundreds of years, yet it still relies on the experience of workers. To improve the automaticity and controllability of the lapping process, a modeling method of friction and wear is developed to predict the surface profile evolution of the workpiece and lapping plate in the lapping process. In the proposed method, by solving the balance equations of resultant force and moment, the inclination angles of the workpiece can be calculated, thus more accurate contact pressure distribution of the workpiece/lapping plate interface can be calculated. Combined with the material removal rate model, the continuous evolution process of the workpiece and lapping plate can be predicted in the lapping process. The modeling method was validated by a lapping test of a flat optical glass (Φ 100 mm) with a composite copper plate. The results show that the proposed method can predict the evolution of the surface profile of the workpiece and lapping plate with high accuracy. Consequently, the lapping plate can be dressed at the right time point. Benefit from this, in the validation test the PV value of the workpiece (with 5 mm edge exclusion) was reduced from 5.279 μm to 0.267 μm in 30 min. The proposed surface profile evolution modeling method not only improves the lapping efficiency but also provides an opportunity to understand the lapping process.


2007 ◽  
Vol 329 ◽  
pp. 353-358 ◽  
Author(s):  
Kazushi Minaki ◽  
Koichi Kitajima ◽  
Yu Nakahira ◽  
K. Minaki ◽  
Moriyasu Izawa ◽  
...  

Recently, wet blasting is generally used such as liquid honing and water jet machining in surface before plating of stainless steel. The outstanding feature of wet blasting is to prevent generation of static electric charge, to use micro abrasive grain, and to have cushioning for workpiece. On the other hand, the disadvantage of wet blasting is to generate corrosion of equipment and liquid waste under processing. Moreover, the using abrasive grain is available on a limited basis. In particular, improvement disposal of liquid waste under processing is crucial in the near future. This paper makes proposal for improvement of surface texture by utilizing dry blasting, and it conducts improvement of surface texture about martensite stainless steel (SUS420J2 In JIS), which is used in material for scale. In the previous report, it has been cleared that relationship between surface texture and wettability. In this report, adhesion of plating was measured by scratch test. As a result, it was cleared that availability of adhesion evaluation by utilizing wettability.


2018 ◽  
Vol 221 ◽  
pp. 01004
Author(s):  
Vishal S Sharma ◽  
Amit Kumar ◽  
Munish Kumar Gupta ◽  
Neeraj Bhanot

Recently, the trend of optimization algorithms for improvements of surface quality and productivity characteristics in abrasive water jet machining of titanium alloy (Ti-6Al-4V alloy) has become increasingly more widespread in various industrial sectors i.e., aircraft and automobile Industries. Here, the present research attempts to select the ideal or best AWJM process parameters by implementing the well known meta-heuristic algorithm i.e., Teacher learning based optimization method (TLBO). The AWJM experiments as per the Taguchi L9 orthogonal array were performed on Ti 6Al-4V titanium alloy by considering jet transverse speed, stand-off distance and abrasive flow as the input parameters. Then, the influence of process parameters on surface roughness and material removal rate has been performed by means plot and ANOVA analysis. After that, the results are optimized with the TLBO method. The overall results indicate that the TLBO method is an efficient method used to find the optimal results with very short interval of time i.e., within 3 sec.


Sign in / Sign up

Export Citation Format

Share Document