Pituitary Control of Fetal and Adult Leydig Cells and Physiological Regulation of Gonadotropin Gene Expression and Secretion in the Male

Author(s):  
I. Huhtaniemi ◽  
P. Pakarinen ◽  
M. Bergendahl ◽  
A. Perheentupa ◽  
T. Matikainen ◽  
...  
2007 ◽  
Vol 1120 (1) ◽  
pp. 16-35 ◽  
Author(s):  
L. DONG ◽  
S. A. JELINSKY ◽  
J. N. FINGER ◽  
D. S. JOHNSTON ◽  
G. S. KOPF ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shogo Yanai ◽  
Takashi Baba ◽  
Kai Inui ◽  
Kanako Miyabayashi ◽  
Soyun Han ◽  
...  

AbstractThe SRY gene induces testis development even in XX individuals. However, XX/Sry testes fail to produce mature sperm, due to the absence of Y chromosome carrying genes essential for spermatogenesis. XX/Sry Sertoli cells show abnormalities in the production of lactate and cholesterol required for germ cell development. Leydig cells are essential for male functions through testosterone production. However, whether XX/Sry adult Leydig cells (XX/Sry ALCs) function normally remains unclear. In this study, the transcriptomes from XY and XX/Sry ALCs demonstrated that immediate early and cholesterogenic gene expressions differed between these cells. Interestingly, cholesterogenic genes were upregulated in XX/Sry ALCs, although downregulated in XX/Sry Sertoli cells. Among the steroidogenic enzymes, CYP17A1 mediates steroid 17α-hydroxylation and 17,20-lyase reaction, necessary for testosterone production. In XX/Sry ALCs, the latter reaction was selectively decreased. The defects in XX/Sry ALCs, together with those in the germ and Sertoli cells, might explain the infertility of XX/Sry testes.


2011 ◽  
Vol 25 (7) ◽  
pp. 1211-1222 ◽  
Author(s):  
Soichi Yamashita ◽  
Ping Tai ◽  
Jean Charron ◽  
CheMyong Ko ◽  
Mario Ascoli

Endocrinology ◽  
2003 ◽  
Vol 144 (8) ◽  
pp. 3368-3375 ◽  
Author(s):  
XingJia Wang ◽  
Matthew T. Dyson ◽  
Youngah Jo ◽  
Douglas M. Stocco

Abstract To study the mechanism for the regulatory effect of arachidonic acid (AA) on steroidogenesis, the role of cyclooxygenase (COX) in steroid production and steroidogenic acute regulatory (StAR) gene expression was investigated. Although stimulation with 0.05 mm dibutyryl cAMP (Bt2cAMP) did not increase StAR protein or progesterone in MA-10 mouse Leydig cells, the addition of 1 μm of the COX inhibitor indomethacin increased StAR protein expression and progesterone production by 5.7-fold and 34.3-fold, respectively. In the presence of indomethacin, the level of Bt2cAMP required for maximal steroidogenesis was reduced from 1.0 mm to 0.25 mm. Similar results were obtained in studies on StAR promoter activity and in Northern blot analyses of StAR mRNA expression, suggesting that inhibition of COX activity enhanced StAR gene transcription. COX2 (an inducible isoform of COX) was constitutively detected in MA-10 cells. Although SC560, a selective COX1 inhibitor, did not affect steroidogenesis, the COX2 inhibitor NS398 significantly enhanced Bt2cAMP-stimulated StAR protein expression and steroid production. Overexpression of the COX2 gene in COS-1 cells significantly inhibited StAR promoter activity. The results of the present study suggest that inhibition of COX2 activity increases the sensitivity of steroidogenesis to cAMP stimulation in MA-10 Leydig cells.


Endocrinology ◽  
2001 ◽  
Vol 142 (12) ◽  
pp. 5116-5123 ◽  
Author(s):  
Kwang-Hoon Song ◽  
Jae-Il Park ◽  
Mi-Ock Lee ◽  
Jaemog Soh ◽  
Keesook Lee ◽  
...  

Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3267-3273 ◽  
Author(s):  
Akhilesh K. Pandey ◽  
Xiangling Yin ◽  
Randolph B. Schiffer ◽  
James C. Hutson ◽  
Douglas M. Stocco ◽  
...  

Recent studies suggested an involvement of thromboxane A2 in cyclooxygenase-2-dependent inhibition of steroidogenic acute regulatory (StAR) gene expression. The present study further investigated the role of thromboxane A2 receptor in StAR gene expression and steroidogenesis in testicular Leydig cells. The thromboxane A2 receptor was detected in several Leydig cell lines. Blocking thromboxane A2 binding to the receptor using specific antagonist SQ29548 or BM567 resulted in dose-dependent increases in StAR protein and steroid production in MA-10 mouse Leydig cells. The results were confirmed with Leydig cells isolated from rats. StAR promoter activity and StAR mRNA level in the cells were also increased after the treatments, suggesting an involvement of the thromboxane A2 receptor in StAR gene transcription. Furthermore study indicated that blocking the thromboxane A2 receptor reduced dosage sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1 protein, a transcriptional repressor of StAR gene expression. Specific binding of the antagonists to the receptors on cellular membrane was demonstrated by binding assays using 3H-SQ29548 and binding competition between 3H-SQ29548 and BM567. Whereas SQ29548 enhanced cAMP-induced StAR gene expression, in the absence of cAMP, it was unable to increase StAR protein and steroidogenesis. However, when the receptor was blocked by the antagonist, subthreshold levels of cAMP were able to induce maximal levels of StAR protein expression, suggesting that blocking the thromboxane A2 receptor increase sensitivity of MA-10 cells to cAMP stimulation. Taken together, the results from the present and previous studies suggest an autocrine loop, involving cyclooxygenase-2, thromboxane A synthase, and thromboxane A2 and its receptor, in cyclooxygenase-2-dependent inhibition of StAR gene expression.


Sign in / Sign up

Export Citation Format

Share Document