Production of Dimethylsulfide After Deposition of Increasing Amounts of Emiliania Huxleyi onto Sediments in Marine Microcosms

Author(s):  
Ronald Osinga ◽  
Johanna J. Minnaard ◽  
Wilma E. Lewis ◽  
Fleur C. van Duyl
Keyword(s):  
2015 ◽  
Vol 74 (2) ◽  
pp. 173-185 ◽  
Author(s):  
LJ Darroch ◽  
M Lavoie ◽  
M Levasseur ◽  
I Laurion ◽  
WG Sunda ◽  
...  

2016 ◽  
Vol 210 (1) ◽  
pp. 88-96 ◽  
Author(s):  
Sergey Malitsky ◽  
Carmit Ziv ◽  
Shilo Rosenwasser ◽  
Shuning Zheng ◽  
Daniella Schatz ◽  
...  

1995 ◽  
Vol 22 (1) ◽  
pp. 225-229 ◽  
Author(s):  
N. Spooner ◽  
J.M. Getliff ◽  
M.A. Teece ◽  
R.J. Parkes ◽  
J.W. Leftley ◽  
...  

BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 1051 ◽  
Author(s):  
Sebastian D Rokitta ◽  
Peter Von Dassow ◽  
Björn Rost ◽  
Uwe John

2014 ◽  
Vol 26 (6) ◽  
pp. 2689-2707 ◽  
Author(s):  
Shilo Rosenwasser ◽  
Michaela A. Mausz ◽  
Daniella Schatz ◽  
Uri Sheyn ◽  
Sergey Malitsky ◽  
...  

2016 ◽  
Vol 13 (10) ◽  
pp. 3163-3174 ◽  
Author(s):  
Katharina Lenhart ◽  
Thomas Klintzsch ◽  
Gerald Langer ◽  
Gernot Nehrke ◽  
Michael Bunge ◽  
...  

Abstract. Methane (CH4), an important greenhouse gas that affects radiation balance and consequently the earth's climate, still has uncertainties in its sinks and sources. The world's oceans are considered to be a source of CH4 to the atmosphere, although the biogeochemical processes involved in its formation are not fully understood. Several recent studies provided strong evidence of CH4 production in oxic marine and freshwaters, but its source is still a topic of debate. Studies of CH4 dynamics in surface waters of oceans and large lakes have concluded that pelagic CH4 supersaturation cannot be sustained either by lateral inputs from littoral or benthic inputs alone. However, regional and temporal oversaturation of surface waters occurs frequently. This comprises the observation of a CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox". In this study we considered marine algae as a possible direct source of CH4. Therefore, the coccolithophore Emiliania huxleyi was grown under controlled laboratory conditions and supplemented with two 13C-labeled carbon substrates, namely bicarbonate and a position-specific 13C-labeled methionine (R-S-13CH3). The CH4 production was 0.7 µg particular organic carbon (POC) g−1 d−1, or 30 ng g−1 POC h−1. After supplementation of the cultures with the 13C-labeled substrate, the isotope label was observed in headspace CH4. Moreover, the absence of methanogenic archaea within the algal culture and the oxic conditions during CH4 formation suggest that the widespread marine algae Emiliania huxleyi might contribute to the observed spatially and temporally restricted CH4 oversaturation in ocean surface waters.


2017 ◽  
Vol 14 (24) ◽  
pp. 5693-5704 ◽  
Author(s):  
Gabriella M. Weiss ◽  
Eva Y. Pfannerstill ◽  
Stefan Schouten ◽  
Jaap S. Sinninghe Damsté ◽  
Marcel T. J. van der Meer

Abstract. Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.


2014 ◽  
Vol 11 (8) ◽  
pp. 2295-2308 ◽  
Author(s):  
M. T. Horigome ◽  
P. Ziveri ◽  
M. Grelaud ◽  
K.-H. Baumann ◽  
G. Marino ◽  
...  

Abstract. Although ocean acidification is expected to impact (bio) calcification by decreasing the seawater carbonate ion concentration, [CO32−], there is evidence of nonuniform response of marine calcifying plankton to low seawater [CO32−]. This raises questions about the role of environmental factors other than acidification and about the complex physiological responses behind calcification. Here we investigate the synergistic effect of multiple environmental parameters, including seawater temperature, nutrient (nitrate and phosphate) availability, and carbonate chemistry on the coccolith calcite mass of the cosmopolitan coccolithophore Emiliania huxleyi, the most abundant species in the world ocean. We use a suite of surface (late Holocene) sediment samples from the South Atlantic and southwestern Indian Ocean taken from depths lying above the modern lysocline (with the exception of eight samples that are located at or below the lysocline). The coccolith calcite mass in our results presents a latitudinal distribution pattern that mimics the main oceanographic features, thereby pointing to the potential importance of seawater nutrient availability (phosphate and nitrate) and carbonate chemistry (pH and pCO2) in determining coccolith mass by affecting primary calcification and/or the geographic distribution of E. huxleyi morphotypes. Our study highlights the importance of evaluating the combined effect of several environmental stressors on calcifying organisms to project their physiological response(s) in a high-CO2 world and improve interpretation of paleorecords.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuri Mizukawa ◽  
Yuito Miyashita ◽  
Manami Satoh ◽  
Yoshihiro Shiraiwa ◽  
Masakazu Iwasaka

Sign in / Sign up

Export Citation Format

Share Document