scholarly journals The Empirical Connection Between (p,n) Cross Sections and Beta Decay Transition Strengths

Author(s):  
T. N. Taddeucci
Keyword(s):  
2019 ◽  
Vol 97 (11) ◽  
pp. 1206-1209
Author(s):  
Ezgi Tantoğlu ◽  
Nalan Özkan ◽  
R. Taygun Güray

There are 35 proton-rich isotopes between 74Se and 196Hg that cannot be synthesized through neutron captures and β− decays (s- and r-processes). A third process is therefore required for the production of these nuclei, the so-called p-process. The abundance and the origin of the p-nuclei are still not fully understood even though significant experimental and theoretical efforts in astrophysical modeling have been expended in the last two decades. The experimental studies with the activation method to measure cross sections of the relevant reactions have some limitations: the reaction product must be radioactive, should have an appropriate half-life, and its decay should be followed by proper γ-radiations. If the cross section cannot be calculated with the radiation followed by the first beta decay of the product, it can be measured using the second beta decay as an alternative method. In this study, the method and candidate reactions for the cross-section measurements via the second beta decay of the reaction product using the activation method are discussed.


1964 ◽  
Vol 135 (1B) ◽  
pp. B137-B146 ◽  
Author(s):  
John N. Bahcall

2011 ◽  
Vol 221 ◽  
pp. 341 ◽  
Author(s):  
M.J. Dolinski ◽  
M. Devlin ◽  
N. Fotiadis ◽  
P.E. Garrett ◽  
R.O. Nelson ◽  
...  

2019 ◽  
Author(s):  
Muhammad Ali

This paper proposes a mechanism for the decay of free neutron with interactions with neutrino(s). A mathematical framework is developed using canonical ensemble framework for the interactions. Probability distribution of neutron discrete energy states has been derived which is a function of neutrino-zeta – a macroscopic property of neutrinos. Consequently, a relationship between neutron decay constant and probability of neutron beta decay is provided, assuming linear proportionality. Furthermore, qualitative explanation of neutron lifetime puzzle, where discrepancy in lifetime measurements based on measurement method (Bottle vs Beam), is related to neutrino microscopic cross-sections. In addition, inverse beta-decay reaction of proton and beta-negative and beta-positive reaction of radionuclides have been analyzed using the proposed mechanism. The probabilities of beta-negative and beta-positive reactions in nature are qualitatively in agreement with the proposed mechanism. Lastly, way to test the mechanism experimentally with reactor neutrinos and neutrino beams has been presented.


Author(s):  
Francesco Cappuzzello ◽  
Clementina Agodi ◽  
Luciano Calabretta ◽  
Daniela Calvo ◽  
Diana Carbone ◽  
...  

NUMEN proposes an innovative technique to access the nuclear matrix elements entering the expression of the lifetime of the double beta decay by cross-section measurements of heavy-ion induced Double Charge Exchange (DCE) reactions. Despite the fact that the two processes, namely neutrinoless double beta decay and DCE reactions, are triggered by the weak and strong interaction respectively, important analogies are suggested. The basic point is the coincidence of the initial and final state many-body wave functions in the two types of processes and the formal similarity of the transition operators. The main experimental tools for this project are the K800 Superconducting Cyclotron and MAGNEX spectrometer at the INFN-LNS laboratory. However, the tiny values of DCE cross-sections and the resolution requirements demand beam intensities much higher than those manageable with the present facility. The on-going upgrade of the INFN-LNS facilities promoted by the POTLNS * project in this perspective is intimately connected to the NUMEN project. This paper describes the solutions proposed as a result of the R&D activity performed during the recent years. The goal is to develop suitable technologies allowing for the measurements of DCE cross-section under extremely high beam intensities. * PIR01_00005 — potenziamento dell’infrastruttura di ricerca Laboratori Nazionali del Sud per la produzione di fasci di ioni ad alta intensitá.


Author(s):  
S. Golladay

The theory of multiple scattering has been worked out by Groves and comparisons have been made between predicted and observed signals for thick specimens observed in a STEM under conditions where phase contrast effects are unimportant. Independent measurements of the collection efficiencies of the two STEM detectors, calculations of the ratio σe/σi = R, where σe, σi are the total cross sections for elastic and inelastic scattering respectively, and a model of the unknown mass distribution are needed for these comparisons. In this paper an extension of this work will be described which allows the determination of the required efficiencies, R, and the unknown mass distribution from the data without additional measurements or models. Essential to the analysis is the fact that in a STEM two or more signal measurements can be made simultaneously at each image point.


Author(s):  
R. W. Anderson ◽  
D. L. Senecal

A problem was presented to observe the packing densities of deposits of sub-micron corrosion product particles. The deposits were 5-100 mils thick and had formed on the inside surfaces of 3/8 inch diameter Zircaloy-2 heat exchanger tubes. The particles were iron oxides deposited from flowing water and consequently were only weakly bonded. Particular care was required during handling to preserve the original formations of the deposits. The specimen preparation method described below allowed direct observation of cross sections of the deposit layers by transmission electron microscopy.The specimens were short sections of the tubes (about 3 inches long) that were carefully cut from the systems. The insides of the tube sections were first coated with a thin layer of a fluid epoxy resin by dipping. This coating served to impregnate the deposit layer as well as to protect the layer if subsequent handling were required.


Author(s):  
Mihir Parikh

It is well known that the resolution of bio-molecules in a high resolution electron microscope depends not just on the physical resolving power of the instrument, but also on the stability of these molecules under the electron beam. Experimentally, the damage to the bio-molecules is commo ly monitored by the decrease in the intensity of the diffraction pattern, or more quantitatively by the decrease in the peaks of an energy loss spectrum. In the latter case the exposure, EC, to decrease the peak intensity from IO to I’O can be related to the molecular dissociation cross-section, σD, by EC = ℓn(IO /I’O) /ℓD. Qu ntitative data on damage cross-sections are just being reported, However, the microscopist needs to know the explicit dependence of damage on: (1) the molecular properties, (2) the density and characteristics of the molecular film and that of the support film, if any, (3) the temperature of the molecular film and (4) certain characteristics of the electron microscope used


Sign in / Sign up

Export Citation Format

Share Document