X-ray Fluorescence Analysis of Alloy and Stainless Steels Using a Mercuric Iodide Detector

1988 ◽  
pp. 439-444 ◽  
Author(s):  
Warren C. Kelliher ◽  
W. Gene Maddox
1987 ◽  
Vol 31 ◽  
pp. 439-444
Author(s):  
Warren C. Kelliher ◽  
W. Gene Maddox

Energy dispersive x-ray fluorescence (XRF) spectrometry has been used extensively for some time now to do accurate and rapid analysis of a variety of samples. Most XRF Systems today use cryogenically cooled Si(Li) detectors to obtain the resolution needed for analysis of samples containing several elements. The need for the cryogenic coolant results in these XRP systems being rather large and not readily adaptable to portable devices. Detectors that require no cooling, or at least require only cooling obtainable by electrical weans, offer a definite advantage over cryogenically cooled detectors for use in portable devices. Mercuric iodide (HgI2) detectors are one type of such room-temperature detectors. The major disadvantage of any room-temperature detector has been the poor eneygy resolution associated with them.


1981 ◽  
Vol 25 ◽  
pp. 39-44 ◽  
Author(s):  
C. A. N. Conde ◽  
L. F. Requicha Ferreira ◽  
A. J. de Campos

AbstractA review of the basic physical principles of the gas proportional scintillation counter is presented. Its performance is discussed and compared with that of other room-temperature detectors in regard to applications to portable instruments for energy-dispersive X-ray fluorescence analysis. It is concluded that the gas proportional scintillation counter is definitely superior to all other room-temperature detectors, except the mercuric iodide (HgI2) detector. For large areas or soft X-rays it is also superior to the HgI2 detector.


CORROSION ◽  
1959 ◽  
Vol 15 (11) ◽  
pp. 73-77 ◽  
Author(s):  
JOHN F. RADAVICH

Abstract Growth of oxide films at 600 and 800 C on a series of 16 Cr-10 Ni-bal Fe stainless steels with silicon contents ranging from 0.17 to 3.55 percent was studied by electron microscopy, electron diffraction, X-ray diffraction and X-ray fluorescence analysis techniques. Oxide scales and sub-scales formed during oxidation at 1000 C were studied optically in cross section as well as by X-ray diffraction and fluorescence analysis. Results show that as silicon content increases oxidation resistance increases rapidly until at the high silicon level, 3.55 percent, a very thin oxide film is formed at 60u and 800 G and very little oxide scale forms at 1000 C. Mechanism of oxidation resistance imparted by silicon appears to be that it decreases the number of defects in the initial oxide films formed at the metal-oxide interface. With a lesser number of defects in the thin film, an enrichment of Cr at the metal-oxide interface and in the oxide films occurs and the rate of diffusion of iron outward to form the oxide scale is greatly retarded. 2.3.7


1979 ◽  
Vol 23 ◽  
pp. 249-256
Author(s):  
M. Singh ◽  
A.J. Dabrowski ◽  
G.C. Huth ◽  
J.S. Iwanczyk ◽  
B.C. Clark ◽  
...  

We have previously reported on the uniqueness and potential of room-temperature spectrometry of low-energy x-rays with a mercuric iodide (HgI2) detector (1,2,3). In this paper we emphasize the use of HgI2 detectors for x-ray fluorescence (XRF) analysis.Because no vacuum plumbing or cryogenic cooling is required, the design of a mercuric iodide room-temperature x-ray spectrometer is extremely simple. Our present design consists of coupling a detector directly to the first-stage FET in a modified Tennelec 161 D preamplifier and making the configuration “light-tight”. Aside from providing a suitable entrance window, there are no other requirements for routine spectroscopy.


1980 ◽  
pp. 249-256 ◽  
Author(s):  
M. Singh ◽  
A. J. Dabrowski ◽  
G. C. Huth ◽  
J. S. Iwanczyk ◽  
B. C. Clark ◽  
...  

1981 ◽  
pp. 337-343 ◽  
Author(s):  
M. Singh ◽  
B. C. Clark ◽  
A. J. Dabrowski ◽  
J. S. Iwanczyk ◽  
D. E. Leyden ◽  
...  

1980 ◽  
Vol 24 ◽  
pp. 303-309 ◽  
Author(s):  
J. Nissenbaum ◽  
A. Holzer ◽  
M. Roth ◽  
M. Schieber

AbstractMercuric iodide HgI2 room temperature solid state radiation spectrometers having 4% energy resolution at 100 KeV detected the x-ray fluorescence (XRF) of the K shell of intermediate and high Z elements. The excitation of the K shells which emit XRF more energetic than 60 KeV was achieved with 7mCi collimated 57Co and for XRF less energetic than 60 KeV the excitation was done with a 10mCi 241Am source. The K shell XRF spectra of a 1:1 mixture of U and Th, and also of the single elements of Au, Tb, Ba, Ag, Mo, and Rb are shown. The results prove the feasibility of developing mercuric iodide portable XRF spectrometers which operate at room temperature and which have a wide range of geochemical and industrial applications.


Sign in / Sign up

Export Citation Format

Share Document