The Gas Proportional Scintillation Counter as a Room-Temperature Detector For Energy-Dispersive X-Ray Fluorescence Analysis

1981 ◽  
Vol 25 ◽  
pp. 39-44 ◽  
Author(s):  
C. A. N. Conde ◽  
L. F. Requicha Ferreira ◽  
A. J. de Campos

AbstractA review of the basic physical principles of the gas proportional scintillation counter is presented. Its performance is discussed and compared with that of other room-temperature detectors in regard to applications to portable instruments for energy-dispersive X-ray fluorescence analysis. It is concluded that the gas proportional scintillation counter is definitely superior to all other room-temperature detectors, except the mercuric iodide (HgI2) detector. For large areas or soft X-rays it is also superior to the HgI2 detector.

1979 ◽  
Vol 23 ◽  
pp. 249-256
Author(s):  
M. Singh ◽  
A.J. Dabrowski ◽  
G.C. Huth ◽  
J.S. Iwanczyk ◽  
B.C. Clark ◽  
...  

We have previously reported on the uniqueness and potential of room-temperature spectrometry of low-energy x-rays with a mercuric iodide (HgI2) detector (1,2,3). In this paper we emphasize the use of HgI2 detectors for x-ray fluorescence (XRF) analysis.Because no vacuum plumbing or cryogenic cooling is required, the design of a mercuric iodide room-temperature x-ray spectrometer is extremely simple. Our present design consists of coupling a detector directly to the first-stage FET in a modified Tennelec 161 D preamplifier and making the configuration “light-tight”. Aside from providing a suitable entrance window, there are no other requirements for routine spectroscopy.


1980 ◽  
pp. 249-256 ◽  
Author(s):  
M. Singh ◽  
A. J. Dabrowski ◽  
G. C. Huth ◽  
J. S. Iwanczyk ◽  
B. C. Clark ◽  
...  

1987 ◽  
Vol 31 ◽  
pp. 439-444
Author(s):  
Warren C. Kelliher ◽  
W. Gene Maddox

Energy dispersive x-ray fluorescence (XRF) spectrometry has been used extensively for some time now to do accurate and rapid analysis of a variety of samples. Most XRF Systems today use cryogenically cooled Si(Li) detectors to obtain the resolution needed for analysis of samples containing several elements. The need for the cryogenic coolant results in these XRP systems being rather large and not readily adaptable to portable devices. Detectors that require no cooling, or at least require only cooling obtainable by electrical weans, offer a definite advantage over cryogenically cooled detectors for use in portable devices. Mercuric iodide (HgI2) detectors are one type of such room-temperature detectors. The major disadvantage of any room-temperature detector has been the poor eneygy resolution associated with them.


1982 ◽  
Vol 16 ◽  
Author(s):  
John H. Howes ◽  
John Watling

ABSTRACTThis paper describes the fabrication of mercuric iodide nuclear radiation detectors suitable for X and gamma ray spectrometry at room temperature. The active area of the detectors studied are between 0.2 and 1.5cm sq and they are up to 0.5mm thick. The method of producing a stable electrical contact to the crystal using sputtered germanium has been studied. The X-ray resolution of a 1.5cm sq. area detector at 32 keV is 2.3 keV FWHM when operated at room temperature in conjunction with a time variant filter amplifier. A factor which is important in the fabrication of the detector is the surface passivation necessary to achieve a useful detector life.This type of detector has been used on a wavelength dispersive X-ray spectrometer for energy measurements between 10 and 100 keV. The advantages over the scintillation counter, more commonly used, is the improved resolution of the HgI2 detector and its smaller size. The analyser is primarily used for the detection of low levels of heavy metals on particulate filters. The detectors have also been used on an experimental basis for gamma ray backscatter measurements in the medical field.


1998 ◽  
Vol 4 (6) ◽  
pp. 605-615 ◽  
Author(s):  
Peter J. Statham

As Si(Li) detector technology has matured, many of the fundamental problems have been addressed in the competition among manufacturers and there is now an expectation, implied by many textbooks, that all energy-dispersive X-ray (EDX) detectors are made and will perform in the same way. Although there has been some convergence in Si(Li) systems and these are still the most common, manufacturing recipes still differ and there are many alternative EDX devices, such as microcalorimeters and room temperature detectors, that have both advantages and disadvantages over Si(Li). Rather than emphasizing differences in technologies, performance measures should reveal benefits relevant to the intended application. The instrument is inevitably going to be a “black box” of integrated components; this article reviews some of the methods that have been applied and introduces some new techniques that can be used to assess performance without resorting to complex software or sophisticated mathematical algorithms. Sensitivity, resolution, artefacts, and stability are discussed with particular application to compositional analysis using electron beam excitation of X-rays in the 100-eV to 10-keV energy region.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Runqiu Gu ◽  
Jianfeng Cheng ◽  
Wanchang Lai ◽  
Guangxi Wang

This study proposes a new method of detecting tungsten inclusions in nuclear fuel rod upper-end plug welds using energy-dispersive X-ray fluorescence (EDXRF) analysis. The Monte Carlo simulation method was used to simulate the process of detecting tungsten inclusions in nuclear fuel rod upper-end plug welds by the EDXRF. The detectable tungsten particle diameters in the zirconium alloy at different depths in welds and the detection limits of the trace tungsten dispersed in welds were obtained. Then, we constructed an experimental device that uses a CdTe detector with an X-ray tube. The results showed that the relative standard deviation of the net count rate of tungsten K-series characteristic X-rays [W (Kα)] was 1.46%, and the optimum parameters are a tube voltage of 150 kV and current of 0.5 mA. These values were used to perform energy-dispersive X-ray fluorescence analysis. These results were compared to the X-ray radiographic results, which were broadly similar. Furthermore, the results of EDXRF analysis were more legible and reliable than those from X-ray radiographic inspections. This study demonstrates the feasibility of applying EDXRF analysis to detect tungsten inclusions.


1981 ◽  
pp. 337-343 ◽  
Author(s):  
M. Singh ◽  
B. C. Clark ◽  
A. J. Dabrowski ◽  
J. S. Iwanczyk ◽  
D. E. Leyden ◽  
...  

1984 ◽  
Vol 28 ◽  
pp. 61-68 ◽  
Author(s):  
Atsuo Iida ◽  
Yohichi Gohshi ◽  
Tadashi Matsushita

AbstractTrace element analyses by energy dispersive X-ray fluorescence measurements were made using synchrotron radiation from a dedicated electron storage ring at the Photon Factory in Japan. The continuum or the monochromatic beam was used for excitation. A crystal monochromator or two types of mirror systems were used for monochromatic excitation. A high signal to background ratio was attained with the crystal monochromator, while the highest absolute detectability was achieved with the mirror system. The minimum detection limita obtained from thin samples are of the order of 0.1 ppm or less than 0.1 pg. Furthermore the signal to background ratio was significantly improved by using an X-ray mirror as a sample support in which, external total reflection of exciting X-rays occured.


Sign in / Sign up

Export Citation Format

Share Document