Numerical Picture Treatment of Remote Sensing Imaging Systems for the Evaluation of Oil Spills

Author(s):  
M. Brussieux ◽  
L. Loubersac
2021 ◽  
Vol 6 ◽  
pp. 24-31
Author(s):  
Dmitry A. Baikin

The article analyzes the impact of oil spills on natural objects according to the remote sensing system Sentinel-2 in Eastern Siberia. Remote sensing data analysis is used to detect traces of oil products in the accident area. Conclusions about the usage of Sentinel-2 data for detecting traces of oil products were made.


Author(s):  
Nathalie Pettorelli

This chapter explores how satellite remote sensing can be employed to monitor a wide range of anthropogenic pressures which affect species and ecosystems, in both terrestrial and marine systems. First, it reviews the literature on the use of satellite data to monitor deforestation and forest degradation. It then explores how these data can be used to monitor fragmentation, which is another form of habitat degradation that can represent an important threat to the preservation of biological diversity. This is followed by a review of the use of satellite remote sensing information to monitor urbanisation, night-time light pollution, oil exploration and exploitation, mineral extraction activities, oil spills and run-off, and illegal fishing. The chapter concludes by discussing opportunities for satellite remote sensing to monitor and predict the impact of climate change on biodiversity.


Author(s):  
Kufre Bassey ◽  
Polycarp Chigbu

An important area of environmental science involves the combination of information from diverse sources relating to a similar endpoint. Majority of optical remote sensing techniques used for marine oil spills detection have been reported lately of having high number of false alarms (oil slick look-a-likes) phenomena which give rise to signals which appear to be oil but are not. Suggestions for radar image as an operational tool has also been made. However, due to the inherent risk in these tools, this paper presents the possible research directions of combining statistical techniques with remote sensing in marine oil spill detection and estimation.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3929 ◽  
Author(s):  
Grigorios Tsagkatakis ◽  
Anastasia Aidini ◽  
Konstantina Fotiadou ◽  
Michalis Giannopoulos ◽  
Anastasia Pentari ◽  
...  

Deep Learning, and Deep Neural Networks in particular, have established themselves as the new norm in signal and data processing, achieving state-of-the-art performance in image, audio, and natural language understanding. In remote sensing, a large body of research has been devoted to the application of deep learning for typical supervised learning tasks such as classification. Less yet equally important effort has also been allocated to addressing the challenges associated with the enhancement of low-quality observations from remote sensing platforms. Addressing such channels is of paramount importance, both in itself, since high-altitude imaging, environmental conditions, and imaging systems trade-offs lead to low-quality observation, as well as to facilitate subsequent analysis, such as classification and detection. In this paper, we provide a comprehensive review of deep-learning methods for the enhancement of remote sensing observations, focusing on critical tasks including single and multi-band super-resolution, denoising, restoration, pan-sharpening, and fusion, among others. In addition to the detailed analysis and comparison of recently presented approaches, different research avenues which could be explored in the future are also discussed.


2013 ◽  
Vol 13 (02) ◽  
pp. 1350045 ◽  
Author(s):  
E. F. J. RING ◽  
A. JUNG ◽  
B. KALICKI ◽  
J. ZUBER ◽  
A. RUSTECKA ◽  
...  

Infrared thermal imaging has in recent years become more accessible and affordable as a means of remote sensing for human body temperature such as in identifying a person with fever. The implementation and operational guidelines for identifying a febrile human using a screening thermograph as documented in the ISO/TR 13154:2009 ISO/TR 80600 has been deployed for the screening of a total of 402 children. It was found that there was a significant difference between the temperatures measured in non-fevered patients and those with known fever, with the thermal imaging of the eye region being the most rapid non-contact site for measurement.


Sign in / Sign up

Export Citation Format

Share Document