PTFE Film Adhesion to Electronically Conducting Materials

Author(s):  
K. A. Klinedinst
Author(s):  
Yih-Cheng Shih ◽  
E. L. Wilkie

Tungsten silicides (WSix) have been successfully used as the gate materials in self-aligned GaAs metal-semiconductor-field- effect transistors (MESFET). Thermal stability of the WSix/GaAs Schottky contact is of major concern since the n+ implanted source/drain regions must be annealed at high temperatures (∼ 800°C). WSi0.6 was considered the best composition to achieve good device performance due to its low stress and excellent thermal stability of the WSix/GaAs interface. The film adhesion and the uniformity in barrier heights and ideality factors of the WSi0.6 films have been improved by depositing a thin layer of pure W as the first layer on GaAs prior to WSi0.6 deposition. Recently WSi0.1 has been used successfully as the gate material in 1x10 μm GaAs FET's on the GaAs substrates which were sputter-cleaned prior to deposition. These GaAs FET's exhibited uniform threshold voltages across a 51 mm wafer with good film adhesion after annealing at 800°C for 10 min.


Author(s):  
Lorna K. Mayo ◽  
Kenneth C. Moore ◽  
Mark A. Arnold

An implantable artificial endocrine pancreas consisting of a glucose sensor and a closed-loop insulin delivery system could potentially replace the need for glucose self-monitoring and regulation among insulin dependent diabetics. Achieving such a break through largely depends on the development of an appropriate, biocompatible membrane for the sensor. Biocompatibility is crucial since changes in the glucose sensors membrane resulting from attack by orinter action with living tissues can interfere with sensor reliability and accuracy. If such interactions can be understood, however, compensations can be made for their effects. Current polymer technology offers several possible membranes that meet the unique chemical dynamics required of a glucose sensor. Two of the most promising polymer membranes are polytetrafluoroethylene (PTFE) and silicone (Si). Low-voltage scanning electron microscopy, which is an excellent technique for characterizing a variety of polymeric and non-conducting materials, 27 was applied to the examination of experimental sensor membranes.


1986 ◽  
Vol 47 (C1) ◽  
pp. C1-13-C1-17 ◽  
Author(s):  
M. F. HENNAUT ◽  
P. H. DUVIGNEAUD ◽  
E. PLUMAT
Keyword(s):  

2019 ◽  
Vol 5 (5) ◽  
pp. 24-32
Author(s):  
Viktor N. ANTIPOV ◽  
◽  
Andrey D. GROZOV ◽  
Anna V. IVANOVA ◽  
◽  
...  

2003 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Konstanty Gawrylczyk

The article deals with progress in electromagnetic methods used for quality evaluation of conducting materials. The term "electromagnetic methods" covers the following areas: magneto-inductive methods, magnetic leakage flux probe method, magnetometer principle and eddy-current methods. For the aim of numerical cracks recognition the sensitivity analysis with finite elements was shown.


1992 ◽  
Vol 293 ◽  
Author(s):  
Herve Cheradame ◽  
F. Desbat ◽  
P. Mercier-Niddam ◽  
S. Boileau

AbstractIonically conducting materials containing PEO were prepared from telechelic di(methyl-diethoxy-silane) PEO, synthesized by the hydrosilylation of telechelic diallyl-PEO with methyldiethoxysilane. The network is obtained by the usual sol-gel chemistry. Then, it is filled with LiClO4 by diffusion of the salt and further drying. A comparison is made with the same kind of materials crosslinked using urethane chemistry. Diffusion studies show that the diffusion coefficient of solvent is similar for both types of materials, whilst the ionic conductivity is higher for the networks crosslinked with siloxane bonds. An experiment of diffusion of LiClO4 without solvent showed that this salt has a diffusion coefficient of the order of 2.10-8 cm2.sec-1 at 34°C. The conductivity calculated from this determination is compatible with the mechanism of lithium cation transport by the diffusion of salt molecules. Elasticity modulus measurements show that the salt aggregates are essentially located within the crosslinks at low concentration, but also in the PEO chains for salt concentrations higher than 1 mol/l.


Author(s):  
Thomas F Fässler ◽  
Stefan Strangmüller ◽  
Henrik Eickkhoff ◽  
Wilhelm Klein ◽  
Gabriele Raudaschl-Sieber ◽  
...  

The increasing demand for a high-performance and low-cost battery technology promotes the search for Li+-conducting materials. Recently, phosphidotetrelates and aluminates were introduced as an innovative class of phosphide-based Li+-conducting materials...


2021 ◽  
Vol 22 (2) ◽  
pp. 501
Author(s):  
Kateřina Skopalová ◽  
Katarzyna Anna Radaszkiewicz ◽  
Věra Kašpárková ◽  
Jaroslav Stejskal ◽  
Patrycja Bober ◽  
...  

The active role of biomaterials in the regeneration of tissues and their ability to modulate the behavior of stem cells in terms of their differentiation is highly advantageous. Here, polypyrrole, as a representantive of electro-conducting materials, is found to modulate the behavior of embryonic stem cells. Concretely, the aqueous extracts of polypyrrole induce neurogenesis within embryonic bodies formed from embryonic stem cells. This finding ledto an effort to determine the physiological cascade which is responsible for this effect. The polypyrrole modulates signaling pathways of Akt and ERK kinase through their phosphorylation. These effects are related to the presence of low-molecular-weight compounds present in aqueous polypyrrole extracts, determined by mass spectroscopy. The results show that consequences related to the modulation of stem cell differentiation must also be taken into account when polypyrrole is considered as a biomaterial.


Sign in / Sign up

Export Citation Format

Share Document