Effect of Large Undercooling on Alloy Properties

Author(s):  
Theo Z. Kattamis ◽  
Walter R. Mohn
1989 ◽  
Vol 157 ◽  
Author(s):  
P.A. Stolk ◽  
A. Polman ◽  
W.C. Sinke

ABSTRACTPulsed laser irradiation is used to induce epitaxial explosive crystallization of amorphous silicon layers buried in a (100) oriented crystalline matrix. This process is mediated by a self-propagating liquid layer. Time-resolved determination of the crystallization speed combined with numerical calculation of the interface temperature shows that freezing in silicon saturates at 16 m/s for large undercooling (> 130 K). A comparison between data and different models for melting and freezing indicates that the crystallization behavior at large undercooling can be described correctly if the rate-limiting factor is assumed to be diffusion in liquid Si at the solid/liquid interface.


1999 ◽  
Vol 14 (9) ◽  
pp. 3653-3662 ◽  
Author(s):  
K. L. Lee ◽  
H. W. Kui

Three different kinds of morphology are found in undercooled Pd80Si20, and they dominate at different undercooling regimens ΔT, defined as ΔT = T1 – Tk, where T1 is the liquidus of Pd80Si20 and Tk is the kinetic crystallization temperature. In the small undercooling regimen, i.e., for ΔT ≤ 190 K, the microstructures are typically dendritic precipitation with a eutecticlike background. In the intermediate undercooling regimen, i.e., for 190 ≤ ΔT ≤ 220 K, spherical morphologies, which arise from nucleation and growth, are identified. In addition, Pd particles are found throughout an entire undercooled specimen. In the large undercooling regimen, i.e., for ΔT ≥ 220 K, a connected structure composed of two subnetworks is found. A sharp decrease in the dimension of the microstructures occurs from the intermediate to the large undercooling regimen. Although the crystalline phases in the intermediate and the large undercooling regimens are the same, the crystal growth rate is too slow to bring about the occurrence of grain refinement. Combining the morphologies observed in the three undercooling regimens and their crystallization behaviors, we conclude that phase separation takes place in undercooled molten Pd80Si20.


2018 ◽  
Vol 2 (11) ◽  
Author(s):  
K. Alberi ◽  
B. Fluegel ◽  
D. A. Beaton ◽  
M. Steger ◽  
S. A. Crooker ◽  
...  
Keyword(s):  

Author(s):  
E. Lugscheider ◽  
C. Herbst-Dederichs ◽  
A. Reimann

Abstract Quasicrystalline phases improve many alloy properties such as thermomechanical stability, thermal and electrical conductivity, and tribological performance. High hardness, however, is accompanied by brittleness, an undesired property in many applications. Reduced brittleness can be achieved by embedding quasicrystalline phases in a more ductile material, forming a metal-matrix composite that retains some quasicrystalline properties. This study evaluates thermally sprayed coatings made from different compositions of such composites. The coatings assessed were produced by arc-wire, HVOF, and atmospheric plasma spraying using various forms of feed material, including blended, agglomerated, chemical encased, and attrition-milled powders and filled wires. The investigation involved metallurgical analysis, proving the existence of quasicrystal content and assessing the matrix phase, and tests showing how sliding wear is influenced by the composition of quasicrystalline phases.


2004 ◽  
Author(s):  
Ridha Baccouche ◽  
Andy Sherman ◽  
Susan Ward ◽  
David Wagner ◽  
Craig Miller ◽  
...  

An investigation of the service life aging and heat exposure effects on extruded aluminum alloy properties and structural crashworthiness has been conducted. This research, part of a broader program, consists of investigating five aluminum alloy extrusions each of which is subjected to two heat treatments. The aluminum extrusion investigated are 6063T6, 6061T6, 6260T6, 6014T6, and 7129T6. The two heat treatments are 177°C for 30 minutes and 200°C for 24 hours. The 200°C/24 hours treatment represents an upper limit thermal exposure i.e. components adjacent to exhaust pipes and manifolds. The 200°C heat treatment was applied in addition to the 177°C for 30 minutes. All specimens were subjected to the reference 177°C for 30 minutes treatment. These ten crash members were subjected to dynamic axial crashing at a target speed of 40 kph (25 mph). Force-time data was collected and responses were plotted for all tests. Force-displacement responses were then integrated for the crash energy management and mean axial crash load for each of the aluminum extruded crash members. Bar charts were then generated to describe the crash loads and energy management behaviors of the various aluminum alloys and associated heat treatments. Service life simulated heat exposure was found to effect the mean crash load and crash energy management of the aluminum structural crash members. The heat exposure effects on the crashworthiness of the extruded aluminum members ranged from a reduction of 10% to over 20% in the mean crash load and crash energy management with highest variation observed with the 6260T6 aluminum extrusion.


2018 ◽  
Vol 09 (03) ◽  
pp. 330-344
Author(s):  
Shahbaz Ahmad ◽  
Shazia Bashir ◽  
Daniel Yousaf ◽  
Mian Ahsan Ali
Keyword(s):  

Alloy Physics ◽  
2007 ◽  
pp. 491-523
Author(s):  
Hirotaro Mori ◽  
Jung-Goo Lee
Keyword(s):  

2018 ◽  
Vol 44 (9) ◽  
pp. 1422-1424 ◽  
Author(s):  
Burcu Serefoglu ◽  
Mehmet Emin Kaval ◽  
Seniha Micoogullari Kurt ◽  
Mehmet Kemal Çalişkan

Sign in / Sign up

Export Citation Format

Share Document