Elastic/Plastic Indentation Hardness of Ceramics: The Dislocation Punching Model

1990 ◽  
pp. 421-431 ◽  
Author(s):  
K. Tanaka ◽  
H. Koguchi
2018 ◽  
Vol 931 ◽  
pp. 84-90 ◽  
Author(s):  
Aleksey N. Beskopylny ◽  
Andrey A. Veremeenko ◽  
Elena E. Kadomtseva ◽  
Natalia I. Beskopylnaia

In the practice of civil engineering, the methods of impact diagnostics of materials find their application, allowing quickly and accurately measure the required strength characteristics at any point in the structure. Impact methods offer many advantages, for example, at smaller dimensions can be developed big the contact force, it can be recorded more information about the response of the material to dynamic impact and others. This approach is widely used in determining the hardness of materials and makes it possible to determine the complex mechanical characteristics: yield strength, ultimate strength, and elongation. In the paper we consider the axisymmetric problem of the impact of the conical indenter on the plate, laying on Winkler Foundation under elastic-plastic deformation. The solution is based on the phenomenological model of elastic-plastic indentation in a quasistatic formulation. The general deformations of the plate are considered elastic, and the local, in the contact zone, are elastoplastic. The main characteristics of the impact are determined: the force of the contact interaction, the local indentation, the contact time. The device and methods of determining the strength characteristics of plates under specified conditions of impact were developed on the basis of obtained solutions. The proposed method has been tested on many building structures: bridges, trusses, structural structures of artificial structures, reinforcement bars, welded joints.


1993 ◽  
Vol 8 (6) ◽  
pp. 1291-1299 ◽  
Author(s):  
S. Harvey ◽  
H. Huang ◽  
S. Venkataraman ◽  
W.W. Gerberich

Atomic force microscope measurements of elastic-plastic indentation into an Fe−3 wt. % Si single crystal showed that the volume displaced to the surface is nearly equal to the volume of the cavity. The surface displacement profiles and plastic zone size caused by a 69 nm penetration of a Vickers diamond tip are reasonably represented by an elastic-plastic continuum model. Invoking conservation of volume, estimates of the number of dislocations emanating from the free surface are reasonably consistent with the number of dislocations that have formed in the plastic zone to represent an average calculated plastic strain of 0.044.


2019 ◽  
Vol 87 (1) ◽  
Author(s):  
N. Kumar ◽  
S. N. Khaderi ◽  
K. Tirumala Rao

Abstract The elasto-plastic indentation of auxetic and metal foams is investigated using the finite element method. The contributions of yield strain, elastic, and plastic Poisson’s ratio on the indentation hardness are identified. For a given yield strain, when the plastic Poisson’s ratio is reduced from 0.5, the indentation hardness decreases first and then increases. This trend was found to be valid for a wide of yield strains. For yield strains less than 0.08, the hardness of auxetic materials is much larger when compared with materials having positive plastic Poisson’s ratio. As the plastic Poisson’s ratio approaches −1, the elastic deformations dominate over the plastic deformations. The plastic dissipation, when compared with the elastic work, is lower for materials with negative Poisson’s ratio. There is no effect of elastic Poisson’s ratio on the indentation hardness when the plastic Poisson’s ratio is more than −0.8. When the plastic Poisson’s ratio is less than −0.8, the hardness increases with a decrease of elastic Poisson’s ratio. The plastic dissipation per unit strain energy is maximum for materials with vanishing plastic Poisson’s ratio.


Sign in / Sign up

Export Citation Format

Share Document