Systematic Procedures to Derive Block Diagrams and State Equations from Bond Graphs

Author(s):  
C. Breedveld
Keyword(s):  
1972 ◽  
Vol 94 (3) ◽  
pp. 183-188 ◽  
Author(s):  
H. R. Martens ◽  
A. C. Bell

The problem of deriving a suitable mathematical model for complex devices is discussed. A small vibratory air pump is used as the medium of presentation. The modeling process begins with the basic coupling structure of the device. In a logical step-by-step procedure the initial model is built up to satisfy a number of functional considerations inherent to the device, such as the resonance behavior, input impedance, output impedance, and internal dissipation. At each step in the modeling process the completeness and suitability of the model is examined. Bond graphs drawn for the successively larger and more complex model clearly predict the shortcomings of the partial model and point the way to the next step. It is evident that the principle of causal relations forms a most important guiding element in the modeling process. The final model is in the form of a set of linear state equations, and scaling of the A-matrix indicates the relative importance of parameters when experimental values are substituted for literals.


Author(s):  
Darina Hroncová

Urgency of the research. The bond graphs theory aim for to formulate general class physical systems over power interactions. The factors of power are effort and flow. They have different interpretations in different physical domains. Yet, power can always be used as a generalized resource to model coupled systems residing in several energy domains. Target setting. Formalism of power graphs enables to describe different physical systems and their interactions in a uniform, algorithmizable way and transform them into state space description. This is useful when analyzing mechatronic systems transforming various forms of energy (electrical, fluid, mechanical) by means of information signals to the resulting mechanical energy. Actual scientific researches and issues analysis. Over the past two decades the theory of Bond Graphs has been paying attention to universities around the world, and bond graphs have been part of study programs at an ever-increasing number of universities. In the last decade, their industrial use is becoming increasingly important. The Bond Graphs method was introduced by Henry M. Paynter (1923-2002), a professor at MIT & UT Austin, who started publishing his works since 1959 and gradually worked out the terminology and formalism known today as Bond Graphs translated as binding graphs or performance graphs. Uninvestigated parts of general matters defining. The electrical system model is solved with the help of the above mentioned bond graphs formalism. Gradually, the theory of power graphs in the above example is explained up to the construction of state equations of the electrical system. The state equations are then solved in Matlab / Simulink. The statement of basic materials. Using bond graphs theory to simulate electrical system and verify its suitability for simulating electrical models. In various versions of the parameters of model we can monitor its behavior under different operating conditions. The language of bond graphs aspires to express general class physical systems through power interactions. The factors of power i.e., effort and flow, have different interpretations in different physical domains. Yet, power can always be used as a generalized coordinate to model coupled systems residing in several energy domains. Conclusions. We introduced a method of systematically constructing a bond graph of an electrical system model using Bond graphs. A practical example of an electrical model is given as an application of this methodology. Causal analysis also provides information about the correctness of the model. Differential equations describing the dynamics of the system in terms of system states were derived from a simple electrical system coupling graph. The results correspond to the equations obtained by the classical manual method, where first the equations for individual components are created and then a simulation scheme is derived based on them. The presented methodology uses the reverse procedure. However, manually deriving equations for more complex systems is not so simple. Bond charts prove to be a suitable means of analysis, among other systems and electrical systems.


Author(s):  
F. T. Brown

The practical use of bond graphs to organize the efficient simulation of multiple-phase thermodynamic systems is perhaps the most significant piece of unfinished business regarding the evolution of bond graphs. The most widely recognized form for these cases, called the pseudo bond graph, dictates particular causalities that require iteration, assuming the use of available state equations. This paper shows how the alternative convection bond graphs can direct non-iterative evaluation of state properties of multiphase thermal compliances. The state variables of a compliance become temperature, mass and volume. A refrigeration cycle is used as an example.


2015 ◽  
Vol 22 (4) ◽  
pp. 41-47 ◽  
Author(s):  
Marian Cichy ◽  
Jacek Kropiwnicki ◽  
Zbigniew Kneba

AbstractThe main advantage of the use of the Bond Graphs method and State Equations for modeling energy systems with a complex structure (marine power plants, hybrid vehicles, etc.) is the ability to model the system components of different physical nature using identical theoretical basis. The paper presents a method of modeling thermal energy storage, which is in line with basic BG theory. Critical comments have been put forward concerning multiport energy storage introduced by other authors or the so-called C-field. In suggested approach, the decision not to use pseudo Bond Graphs has been justified as not being in line with basic BG theory. On the basis of molecular physics it was considered that the state variable, in physical and mathematical sense, should be temperature rather than entropy. Examples of the application of the proposed approach to thermodynamic processes and heat exchange have been presented. The application of a single graph as a model for thermal energy storage has been illustrated by a way of numerical simulation examples.


1987 ◽  
Vol 109 (4) ◽  
pp. 378-383 ◽  
Author(s):  
R. C. Rosenberg

Causality as a concept and a tool associated with bond graphs has seen use for more than twenty years. Our principal purpose in this paper is to bring together several different views and applications of causality in order to suggest how valuable it can be in understanding the dynamic structure of models. The topics considered include causality assignment, both traditional and nontraditional, and state equations; design assessment of models based on direct interpretation; and junction structure properties. The topics are illustrated by examples. Some opportunities for additional research into causality properties and applications are suggested.


1979 ◽  
Vol 101 (2) ◽  
pp. 187-191 ◽  
Author(s):  
D. Karnopp ◽  
D. Margolis

A method is presented for incorporating planar mechanisms into dynamic system models using bond graphs. Through the use of stiff coupling springs at the mechanism joints, the nonlinear geometrical relationships are uniformly and simply described by displacement modulated transformers and the system state equations can be written with no algebraic complications. In contrast to the more elegant kinematic techniques for describing mechanism dynamics, the present method results in higher order systems of equations but the equations themselves are simpler and not densely coupled. In addition, coupling forces are available at the joints. An example demonstrates that the extra eigenvalues associated with the coupling springs can readily be found for any configuration so that the spring constants can be chosen to minimize computation time.


Author(s):  
L. S. Louca ◽  
J. L. Stein

Previous research has demonstrated that bond graphs are a natural and convenient representation to implement energy-based metrics that evaluate the relative ‘value’ of energy elements in a dynamic system model. Bond graphs also provide a framework for systematically reformulating a reduced bond graph model (and thus the state equations) of the system that results from eliminating the ‘unimportant’ elements. This paper shows that bond graphs also provide a natural and convenient representation for developing a rigorous approach for interpreting the removal of ideal energy elements from the system model. For example, when a generalized inductance in the mechanical domain is eliminated from a model, the bond graph shows whether the coordinate representing the motion of the body becomes free to move (zero inertia) or fixed to ground (infinite inertia). This systematic interpretation of element removal makes bond graphs an attractive modelling language for automated model reduction techniques. An illustrative example is provided to demonstrate how the developed approach can be applied to provide the physical interpretation of energy element removal from a mechanical system.


2019 ◽  
Vol 1 (7) ◽  
pp. 42-45
Author(s):  
V. A. Golubkov ◽  
V. F. Shishlakov ◽  
A. G. Fedorenko ◽  
E. Yu. Vataeva

Electromechanical devices consist mainly of rotor systems. Vibration is the result of the interaction of the elements of the rotor system and is largely determined by the accuracy of manufacturing elements at the production stage and defects arising in the process of operation. The main components of the rotor systems that affect vibration are bearings. To determine the technical condition of the bearings and the service life of the rotor system, it is necessary to accurately measure the unobservable vibrations of the rotor. The article describes the model of the channel for measuring the vibration of an electromechanical system, built using the apparatus of bond graphs. The transfer function is obtained by analyzing the signal flow graph. The systematic and random errors of vibration measurement are analyzed depending on the mass ratio between the system case and the vibration transducer for various sensor masses and attachment rigidity.


Sign in / Sign up

Export Citation Format

Share Document