ACCURACY RATING MEASUREMENT OF VIBRATION ELECTROMECHANICAL DEVICES

2019 ◽  
Vol 1 (7) ◽  
pp. 42-45
Author(s):  
V. A. Golubkov ◽  
V. F. Shishlakov ◽  
A. G. Fedorenko ◽  
E. Yu. Vataeva

Electromechanical devices consist mainly of rotor systems. Vibration is the result of the interaction of the elements of the rotor system and is largely determined by the accuracy of manufacturing elements at the production stage and defects arising in the process of operation. The main components of the rotor systems that affect vibration are bearings. To determine the technical condition of the bearings and the service life of the rotor system, it is necessary to accurately measure the unobservable vibrations of the rotor. The article describes the model of the channel for measuring the vibration of an electromechanical system, built using the apparatus of bond graphs. The transfer function is obtained by analyzing the signal flow graph. The systematic and random errors of vibration measurement are analyzed depending on the mass ratio between the system case and the vibration transducer for various sensor masses and attachment rigidity.

2006 ◽  
Vol 113 ◽  
pp. 223-228 ◽  
Author(s):  
Vytautas Barzdaitis ◽  
Vytautas Žemaitis ◽  
R. Jonušas ◽  
Vytautas Kazimieras Augustaitis ◽  
Vytautas Bučinskas

The paper is dedicated to research on flexible rotor systems with anisotropic rotor material properties. In addition, the anisotropy of rotor supports alters the rotor system resonance frequencies and the machine has to pass till it attains the operating angular speed. This phenomenon of rotor vibration is observed in vertical rotors. The aim of this work is to compare experimental vibration measurements and results of theoretical modeling. In the paper theoretical model, created from physical one of really existing rotor system is described. Collected experimental data of rotor vibrations in bearings are compared with results of theoretically derived equations. The results of theoretical modeling and research enables for estimation of a more precise technical condition of the rotor system both after the overhaul and during the maintenance and thus to avoid unexpected breakdowns, especially concerning the fatigue development in ball bearing elements.


Author(s):  
Fangsheng Wu ◽  
George T. Flowers

Abstract Modern turbomachinery is used to provide power for a wide range of applications, from steam turbines for electrical power plants to the turbopumps used in the Space Shuttle Main Engine. Such devices are subject to a variety of dynamical problems, including vibration, rotordynamical instability, and shaft whirl. In order to properly design and evaluate the performance and stability of turbomachinery, It is important that appropriate analytical tools be available that allow for the study of potentially important dynamical effects. This research effort is concerned with developing a procedure to account for disk flexibility which can readily be used for investigating how such effects might influence the natural frequencies and critical speeds of practical rotor systems. In the present work, a transfer matrix procedure is developed in which the disk flexibility effects are accounted for by means of additional terms included in the transfer matrix formulation. In this development, the shaft is treated as a discrete system while the disk is modelled as a continuous system using the governing partial differential equation. Based on this governing equation, an equivalent inertial moment Mk*, which is the generalized dynamic force coupling between shaft and disk, is then derived. Analysis shows that only the disk modes of one nodal diameter contribute to the inertial moment, Mk*, and thus influence the natural frequencies of the rotor system. To determine the Mk*, the modal expansion method is employed and the governing partial differential equation of the disk is transformed to a set of decoupled forced vibration equations in the generalized coordinates. The Mk* are then calculated in terms of modal shapes, natural frequencies, and material and geometric parameters which can be found in the literature or can be obtained from experiments. Finally the Mk* are incorporated into the point transfer matrix. By so doing, the properties of quick computational speed and ease of use are retained and the complexity of solving partial differential equations is avoided. This allows the present procedure to be easily applied to practical engineering problems. This is especially true for multiple flexible disk rotor systems. As an example, three different cases for a simplified model of the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbo-Pump (HPOTP) rotor have been studied using this procedure. Some of the more interesting results obtained in this example study are enumerated below. 1.) Disk flexibility can introduce additional natural frequency(s) to a rotor system. 2.) Disk flexibility can cause shifting of some of the natural frequencies. 3.) As disk flexibility is increased, lower natural frequencies of the rotor system will be influenced. 4.) At certain rotor speeds, disk flexibility may cause the disappearance of a natural frequency. 5.) The axial position of the disk on the rotor shaft has a significant effect on the degree of this influence.


Author(s):  
Santosh Ratan ◽  
Jorge Rodriguez

Abstract A method for performing transient dynamic analysis of multi-shaft rotor system is proposed. The proposed methodology uses the reported Successive Merge and Condensation (SMAC) method [12] and a decoupling technique to decouple the shafts. Multi-shaft rotor systems are treated as systems of many independent single shaft rotor systems with external unknown coupling forces acting at the points of couplings. For each time step, first, the SMAC method is used to get the transient response in terms of the unknown coupling forces. This is followed by the application of the coupling constraints to calculate the coupling forces and, in turn, the response at the end of that time step. The proposed method preserves the efficiency advantages of the SMAC algorithm for single-shaft rotor system. Numerical examples to validate and illustrate the applicability of the method are given. The method is shown to be applicable to linear and non-linear coupling problems.


2020 ◽  
pp. 22-31
Author(s):  
Anton Kurakin ◽  

Systems operation which include rotating elements in certain cases is associated with occurrence of contact between the rotating parts (rotor) and the stationary parts (stator). There were cases then rotor-stator interaction led to damage or to complete unit destruction. For this reason, rotor-stator interaction is one of the main problem of rotor systems exploitation. The main aim of the work is to gather detail data about effect of friction on vibrational characteristics of rotor system during rotor-stator interaction. In this article the experimental investigation method and experimental investigation of dynamic behavior of rotor during rotor-stator interaction is presented. The analysis of experimental data obtained during interaction between steel rotor and stator made of aluminum, bronze and PTFE is presented. All results with rotor-stator contact and without were compared by using Campbell diagrams, orbits and frequency responses. Analysis of experimental data shows that friction has strong effect on vibrational characteristics of rotor system during rotor-stator interaction. According to friction ratio three kinds of vibrational characteristics of rotor system are distinguished: forward slipping if friction coefficient is small, backward rolling if friction coefficient is big, vibratory impact motion if friction coefficient has intermediate value. Created experimental method and gathered data about rotor dynamics during rotor-stator contact can be used for verification and tuning of mathematical models.


Author(s):  
Shibing Liu ◽  
Bingen Yang

Flexible multistage rotor systems have a variety of engineering applications. Vibration optimization is important to the improvement of performance and reliability for this type of rotor systems. Filling a technical gap in the literature, this paper presents a virtual bearing method for optimal bearing placement that minimizes the vibration amplitude of a flexible rotor system with a minimum number of bearings. In the development, a distributed transfer function formulation is used to define the optimization problem. Solution of the optimization problem by a real-coded genetic algorithm yields the locations and dynamic coefficients of bearings, by which the prescribed operational requirements for the rotor system are satisfied. A numerical example shows that the proposed optimization method is efficient and accurate, and is useful in preliminary design of a new rotor system with the number of bearings unforeknown.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xue-Qin Li ◽  
Lu-Kai Song ◽  
Guang-Chen Bai

PurposeTo provide valuable information for scholars to grasp the current situations, hotspots and future development trends of reliability analysis area.Design/methodology/approachIn this paper, recent researches on efficient reliability analysis and applications in complex engineering structures like aeroengine rotor systems are reviewd.FindingsThe recent reliability analysis advances of engineering application in aeroengine rotor system are highlighted, it is worth pointing out that the surrogate model methods hold great efficiency and accuracy advantages in the complex reliability analysis of aeroengine rotor system, since its strong computing power can effectively reduce the analysis time consumption and accelerate the development procedures of aeroengine. Moreover, considering the multi-objective, multi-disciplinary, high-dimensionality and time-varying problems are the common problems in various complex engineering fields, the surrogate model methods and its developed methods also have broad application prospects in the future.Originality/valueFor the strong demand for efficient reliability design technique, this review paper may help to highlights the benefits of reliability analysis methods not only in academia but also in practical engineering application like aeroengine rotor system.


Author(s):  
YF Shi ◽  
M Li ◽  
GH Zhu ◽  
Y Yu

Dynamic behaviour is significantly important in the design of large rotor systems supported on water-lubricated rubber bearings. In this study, the mathematical model of elastohydrodynamic lubrication of the bearing is established based on the theory of hydrodynamic lubrication after considering the elastic deformation of rubber, and the dynamic characteristics of water-lubricated rubber bearings are analysed under small perturbation conditions according to the load increment method and the finite difference method. Next, the differential equation of rotor systems coupled with the water-lubricated rubber bearing is deduced using Lagrange’s approach, and its critical speeds, stability, and unbalanced responses are analysed in detail. The numerical results show that several parameters, such as the eccentricity, length–diameter ratio, and clearance of bearing and the rotating speed of the rotor, have a great impact on the dynamic performance of water-lubricated rubber bearings, and this influence cannot be ignored, especially in the case of large eccentricity ratios. The dynamic characteristics of rotor systems guided by water-lubricated rubber bearings reveal that the critical speeds are much lower than the ones under the rigid supports because of the elastic deformation, and they also indicate that the rotor system supported on water-lubricated rubber bearings has a weaker stability. In addition, the steady-state responses of the rotor system are analysed when the mass unbalance of the propeller exists, and the effect of the thickness of the rubber liner is also considered.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 736 ◽  
Author(s):  
Chao Fu ◽  
Guojin Feng ◽  
Jiaojiao Ma ◽  
Kuan Lu ◽  
Yongfeng Yang ◽  
...  

In this paper, the non-probabilistic steady-state dynamics of a dual-rotor system with parametric uncertainties under two-frequency excitations are investigated using the non-intrusive simplex form mathematical metamodel. The Lagrangian formulation is employed to derive the equations of motion (EOM) of the system. The simplex form metamodel without the distribution functions of the interval uncertainties is formulated in a non-intrusive way. In the multi-uncertain cases, strategies aimed at reducing the computational cost are incorporated. In numerical simulations for different interval parametric uncertainties, the special propagation mechanism is observed, which cannot be found in single rotor systems. Validations of the metamodel in terms of efficiency and accuracy are also carried out by comparisons with the scanning method. The results will be helpful to understand the dynamic behaviors of dual-rotor systems subject to uncertainties and provide guidance for robust design and analysis.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Shibing Liu ◽  
Bingen Yang

This paper presents a new approach to optimal bearing placement that minimizes the vibration amplitude of a flexible rotor system with a minimum number of bearings. The thrust of the effort is the introduction of a virtual bearing method (VBM), by which a minimum number of bearings can be automatically determined in a rotor design without trial and error. This unique method is useful in dealing with the issue of undetermined number of bearings. In the development, the VBM and a distributed transfer function method (DTFM) for closed-form analytical solutions are integrated to formulate an optimization problem of mixed continuous-and-integer type, in which bearing locations and bearing index numbers (BINs) (specially defined integer variables representing the sizes and properties of all available bearings) are selected as design variables. Solution of the optimization problem by a real-coded genetic algorithm yields an optimal design that satisfies all the rotor design requirements with a minimum number of bearings. Filling a technical gap in the literature, the proposed optimal bearing placement approach is applicable to either redesign of an existing rotor system for improvement of system performance or preliminary design of a new rotor system with the number of bearings to be installed being unforeknown.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Mian Jiang ◽  
Jigang Wu ◽  
Shuangqi Liu

Nonlinearity measure is proposed to investigate the influence of slowly varying mass on severity of dynamics nonlinearity of bearing-rotor systems with pedestal looseness. A nonlinear mathematical model including the effect of slowly varying disk mass is developed for a bearing-rotor system with pedestal looseness. The varying of equivalent disk mass is described by a cosine function, and the amplitude coefficient is used as a control parameter. Then, nonlinearity measure is employed to quantify the severity of dynamics nonlinearity of bearing-rotor systems. With the increasing of looseness clearances, the curves that denote the trend of nonlinearity degree are plotted for each amplitude coefficient of mass varying. It can be concluded that larger amplitude coefficients of the disk mass varying will have more influence on the severity of dynamics nonlinearity and generation of chaotic behaviors in rotor systems with pedestal looseness.


Sign in / Sign up

Export Citation Format

Share Document