Intranasal Drug Delivery to the Brain

Author(s):  
Jeffrey J. Lochhead ◽  
Robert G. Thorne
2020 ◽  
Vol 14 (3) ◽  
pp. 174-192 ◽  
Author(s):  
Ruchita Singh ◽  
Charles Brumlik ◽  
Mandar Vaidya ◽  
Abhishek Choudhury

Background: Current cerebral drug delivery to the brain and Cerebrospinal Fluid (CSF) is limited by the Blood-Brain Barrier (BBB) or the blood-blood Cerebrospinal Fluid (CSF) barrier. The popular, non-invasive, intranasal delivery provides an exciting route for topical and systemic applications. For example, intranasal drug delivery of Central Nervous System (CNS) drugs can be designed to pass the BBB barrier via the nose-to-brain pathways. Recent nanotechnology research and patenting focus mainly on overcoming typical limitations including bioavailability, transport, BBB penetration, targeted delivery, controlled release rate and controlled degradation. Objective: The aim of the present study was to assess the state-of-the-art of nose-to-brain drug delivery systems and the role of nanotechnology in targeted delivery for the treatment of CNS and related therapeutic conditions. Methods: Patent and related searches were made with analytics to explore and organize nanotech work in intranasal drug delivery to the brain. Technical advancements were mapped by API, formulation and performance criteria. Patents and published patent applications were searched with concept tables of keywords, metadata (e.g., assignee) and patent classes (e.g., International Patent Classes and Cooperative Patent Classes). Results: The reviewed patents and published applications show a focus on formulations and therapeutic indications related to the nano-based nose-to-brain drug delivery. The main patented materials were surface modifiers, delivery systems and excipients. Conclusion: Surface modified nanoparticles can greatly improve drug transport and bioavailability of drugs, particularly higher molecular weight drugs. The most commonly used surface modifiers were chitosan, lectin and cyclodextrin-cross-linker complex. Nanoformulations of herbal drugs could increase drug bioavailability and reduce toxicity. Biotechnology-related drug delivery approaches such as monoclonal antibodies and genetically engineered proteins (molecular Trojan horses) deliver large molecule therapeutics.


RSC Advances ◽  
2020 ◽  
Vol 10 (48) ◽  
pp. 28992-29009
Author(s):  
Amal Yousfan ◽  
Noelia Rubio ◽  
Abdul Hakim Natouf ◽  
Aamal Daher ◽  
Nedal Al-Kafry ◽  
...  

The use of nanoparticles (NPs) for intranasal (IN) drug delivery to the brain represents a hopeful strategy to enhance brain targeting of anti-epileptic drugs.


Life Sciences ◽  
2018 ◽  
Vol 195 ◽  
pp. 44-52 ◽  
Author(s):  
Tyler P. Crowe ◽  
M. Heather West Greenlee ◽  
Anumantha G. Kanthasamy ◽  
Walter H. Hsu

2021 ◽  
Vol 11 (3) ◽  
pp. 3640-3651

Neurological disorders are increasing worldwide due to the rapidly aging population, which increases healthcare costs. Drug delivery to the brain is challenging because of the brain's anatomy, and orally administered drugsare mostly unable to cross BBB. Intranasal (Nose to Brain) administration of drugs is one novel approach to address this challenge. Intranasal delivery has appeared to evade the blood-brain barrier (BBB) and deliver the drug into the CNS at a higher rate and degree than another traditional route. Transport of drugs from the nasal cavity to the brain along with olfactory and trigeminal nerves. The purpose of this review is drug delivery by the intranasal route for treating neurological disorders like Parkinson’s and depression because drug delivery by other routes is unable to cross BBB. Still, delivery through the intranasal route by using the nanotechnology approach is possible to deliver the drug directly to CNS.


2020 ◽  
Vol 26 (37) ◽  
pp. 4721-4737 ◽  
Author(s):  
Bhumika Kumar ◽  
Mukesh Pandey ◽  
Faheem H. Pottoo ◽  
Faizana Fayaz ◽  
Anjali Sharma ◽  
...  

Parkinson’s disease is one of the most severe progressive neurodegenerative disorders, having a mortifying effect on the health of millions of people around the globe. The neural cells producing dopamine in the substantia nigra of the brain die out. This leads to symptoms like hypokinesia, rigidity, bradykinesia, and rest tremor. Parkinsonism cannot be cured, but the symptoms can be reduced with the intervention of medicinal drugs, surgical treatments, and physical therapies. Delivering drugs to the brain for treating Parkinson’s disease is very challenging. The blood-brain barrier acts as a highly selective semi-permeable barrier, which refrains the drug from reaching the brain. Conventional drug delivery systems used for Parkinson’s disease do not readily cross the blood barrier and further lead to several side-effects. Recent advancements in drug delivery technologies have facilitated drug delivery to the brain without flooding the bloodstream and by directly targeting the neurons. In the era of Nanotherapeutics, liposomes are an efficient drug delivery option for brain targeting. Liposomes facilitate the passage of drugs across the blood-brain barrier, enhances the efficacy of the drugs, and minimize the side effects related to it. The review aims at providing a broad updated view of the liposomes, which can be used for targeting Parkinson’s disease.


2020 ◽  
Vol 26 (13) ◽  
pp. 1448-1465 ◽  
Author(s):  
Jozef Hanes ◽  
Eva Dobakova ◽  
Petra Majerova

Tauopathies are neurodegenerative disorders characterized by the deposition of abnormal tau protein in the brain. The application of potentially effective therapeutics for their successful treatment is hampered by the presence of a naturally occurring brain protection layer called the blood-brain barrier (BBB). BBB represents one of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders, where sufficient BBB penetration is inevitable. BBB is a heavily restricting barrier regulating the movement of molecules, ions, and cells between the blood and the CNS to secure proper neuronal function and protect the CNS from dangerous substances and processes. Yet, these natural functions possessed by BBB represent a great hurdle for brain drug delivery. This review is concentrated on summarizing the available methods and approaches for effective therapeutics’ delivery through the BBB to treat neurodegenerative disorders with a focus on tauopathies. It describes the traditional approaches but also new nanotechnology strategies emerging with advanced medical techniques. Their limitations and benefits are discussed.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


Sign in / Sign up

Export Citation Format

Share Document