Progression of heart failure: A role for interstitial fibrosis

Author(s):  
Hani N. Sabbah ◽  
Victor G. Sharov ◽  
Michael Lesch ◽  
Sidney Goldstein
2013 ◽  
Vol 305 (7) ◽  
pp. H1010-H1019 ◽  
Author(s):  
Catherine L. Passariello ◽  
Marjorie Gayanilo ◽  
Michael D. Kritzer ◽  
Hrishikesh Thakur ◽  
Zoharit Cozacov ◽  
...  

Myocardial interstitial fibrosis is an important contributor to the development of heart failure. Type 3 p90 ribosomal S6 kinase (RSK3) was recently shown to be required for concentric myocyte hypertrophy under in vivo pathological conditions. However, the role of RSK family members in myocardial fibrosis remains uninvestigated. Transgenic expression of α-tropomyosin containing a Glu180Gly mutation (TM180) in mice of a mixed C57BL/6:FVB/N background induces a cardiomyopathy characterized by a small left ventricle, interstitial fibrosis, and diminished systolic and diastolic function. Using this mouse model, we now show that RSK3 is required for the induction of interstitial fibrosis in vivo. TM180 transgenic mice were crossed to RSK3 constitutive knockout ( RSK3−/−) mice. Although RSK3 knockout did not affect myocyte growth, the decreased cardiac function and mild pulmonary edema associated with the TM180 transgene were attenuated by RSK3 knockout. The improved cardiac function was consistent with reduced interstitial fibrosis in the TM180; RSK3−/− mice as shown by histology and gene expression analysis, including the decreased expression of collagens. The specific inhibition of RSK3 should be considered as a potential novel therapeutic strategy for improving cardiac function and the prevention of sudden cardiac death in diseases in which interstitial fibrosis contributes to the development of heart failure.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Andrey Vyshedskiy ◽  
Raymond Murphy

Objective. It is generally accepted that crackles are due to sudden opening of airways and that larger airways produce crackles of lower pitch than smaller airways do. As larger airways are likely to open earlier in inspiration than smaller airways and the reverse is likely to be true in expiration, we studied crackle pitch as a function of crackle timing in inspiration and expiration. Our goal was to see if the measurement of crackle pitch was consistent with this theory.Methods. Patients with a significant number of crackles were examined using a multichannel lung sound analyzer. These patients included 34 with pneumonia, 38 with heart failure, and 28 with interstitial fibrosis.Results. Crackle pitch progressively increased during inspirations in 79% of all patients. In these patients crackle pitch increased by approximately 40 Hz from the early to midinspiration and by another 40 Hz from mid to late-inspiration. In 10% of patients, crackle pitch did not change and in 11% of patients crackle pitch decreased. During expiration crackle pitch progressively decreased in 72% of patients and did not change in 28% of patients.Conclusion. In the majority of patients, we observed progressive crackle pitch increase during inspiration and decrease during expiration. Increased crackle pitch at larger lung volumes is likely a result of recruitment of smaller diameter airways. An alternate explanation is that crackle pitch may be influenced by airway tension that increases at greater lung volume. In any case improved understanding of the mechanism of production of these common lung sounds may help improve our understanding of pathophysiology of these disorders.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Joshua G Travers ◽  
Fadia A Kamal ◽  
Michelle L Nieman ◽  
Michelle A Sargent ◽  
Jeffery D Molkentin ◽  
...  

Heart failure is a devastating disease characterized by chamber remodeling, interstitial fibrosis and reduced ventricular compliance. Cardiac fibroblasts are responsible for extracellular matrix homeostasis, however upon injury or pathologic stimulation, these cells transform to a myofibroblast phenotype and play a fundamental role in myocardial fibrosis and remodeling. Chronic sympathetic overstimulation induces excess signaling through G protein βγ subunits and ultimately the pathologic activation of G protein-coupled receptor kinase 2 (GRK2). We hypothesized that Gβγ-GRK2 inhibition plays an important role in the cardiac fibroblast to attenuate pathologic myofibroblast activation and cardiac remodeling. To investigate this hypothesis, mice were subjected to ischemia/reperfusion (I/R) injury and treated with the small molecule Gβγ-GRK2 inhibitor gallein. While animals receiving vehicle demonstrated a reduction in overall cardiac function as measured by echocardiography, mice treated with gallein exhibited nearly complete preservation of cardiac function and reduced fibrotic scar formation. We next sought to establish the cell specificity of this compound by treating inducible cardiomyocyte- and activated fibroblast-specific GRK2 knockout mice post-I/R. Although we observed modest restoration in cardiac function in cardiomyocyte-specific GRK2 null mice, treatment of these mice with gallein resulted in further protection against myocardial dysfunction following injury, suggesting a functional role in other cardiac cell types, including fibroblasts. Activated fibroblast-specific GRK2 knockout mice were also subjected to ischemia/reperfusion injury; these animals displayed preserved myocardial function and reduced collagen deposition compared to littermate controls following injury. Furthermore, systemic Gβγ-GRK2 inhibition by gallein did not appear to confer further protection over activated fibroblast-specific GRK2 ablation alone. In summary, these findings suggest a potential therapeutic role for Gβγ-GRK2 inhibition in limiting pathologic myofibroblast activation, interstitial fibrosis and heart failure progression.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Masamichi Hirose ◽  
Yasuchika Takeishi ◽  
Hisashi Shimojo ◽  
Toshihide Kashihara ◽  
Tsutomu Nakada ◽  
...  

Introduction: Beneficial effects of nicorandil on the treatment of hypertensive heart failure (HF) and ischemic heart disease have been suggested. However, whether nicorandil has inhibitory effects on HF and ventricular arrhythmias caused by the activation of G protein alpha q (Gαq) -coupled receptor (GPCR) signaling pathway still remains unknown. We examined effects of chronic and acute administration of nicorandil on the development of HF and ventricular action potential (VAP) in transgenic mice with transient cardiac expression of activated Gαq (Gαq-TG), respectively. Method and Results: Nicorandil (6 mg/kg/day) or vehicle was chronically administered in Gαq-TG mice for 24 weeks from 8 weeks of age, and then ventricular function, and electrical and structural changes were investigated in the hearts. Chronic nicorandil administration improved the reduction of left ventricular fractional shortening (p < 0.001) in Gαq-TG hearts. During 10 min of electrocardiogram recording, premature ventricular contractions (more than 20 beats/min) were observed in 7 of 10 vehicle-treated Gαq-TG but in none of 10 nicorandil-treated Gαq-TG hearts (p < 0.01). QT interval was significantly shorter in nicorandil-treated Gαq-TG than in vehicle-treated Gαq-TG hearts (p < 0.05). Chronic nicorandil administration improved the increased ventricular interstitial fibrosis (p < 0.05) but not cardiac hypertrophy in Gαq-TG left ventricles. Real time RT-PCR revealed that mRNA expression levels of s sulfonylurea receptor 2B (SUR-2B) were decreased in vehicle-treatd Gαq-TG but not in nicorandil-treated Gαq-TG. In addition, chronic nicorandil increased endotherial nitric oxide syntheses gene expression in Gαq-TG hearts (p < 0.05). Acute nicorandil administration (1 microM) significantly shortened the prolonged VAP duration and reduced the number of PVCs in vehicle treated Gαq-TG hearts. Conclusions: These findings suggest that nicorandil inhibits ventricular electrical and structural remodeling and arrhythmias through the shortening of VAP duration and the increased expression of SUR-2B and eNOS in a mouse model of HF.


2018 ◽  
Vol 71 (15) ◽  
pp. 1696-1706 ◽  
Author(s):  
Arantxa González ◽  
Erik B. Schelbert ◽  
Javier Díez ◽  
Javed Butler

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Fadia A Kamal ◽  
Alan V Smrcka ◽  
Burns C Blaxall

Heart failure (HF) is a progressive disease with rapidly increasing rates of morbidity and mortality; it is the leading cause of death worldwide. Elevated sympathetic nervous system activity, a salient feature of HF progression, leads to pathologic attenuation and desensitization of β-adrenergic receptors (β-ARs) due in part to Gβγ-mediated signaling. We recently reported that novel small molecule Gβγ inhibitors selectively block specific Gβγ signals and halt HF progression in pharmacologic and transgenic mouse models of HF. We assessed the hypothesis that the Gβγ inhibitor Gallein could be salutary in treating pre-existing HF in a clinically relevant model. We utilized the pressure-overload HF model of mouse transverse aortic constriction (TAC). Four weeks post-TAC, mice received daily IP injections of vehicle (PBS; group V) or Gallein (10mg/Kg/day; group G) for eight weeks. Gallein treatment improved survival (7 of 9 mice survived vs. 5 of 9 mice in group V) and cardiac function (%EF 75.2 ± 7.5 vs 35.6 ± 17.2 in group V, +dP/dt (mmHg/sec) 7022 ± 485.3 vs. 3584 ± 598.6 in group V), -dP/dt (mmHg/sec) -5826 ± 910.7 vs. -3260 ± 62.3 in group V, LVEDP (mmHg) 11.5 ± 3.7 vs. 29.45 ± 3.6 in group V). In addition, gallein reduced cardiac hypertrophy (HW/BW (mg/g) 5.8 ± 0.3 vs. 8.8 ± 1.1 in group V) and plasma catecholamine concentrations (adrenaline (ng/ml) 1.3 ± 0.3 vs. 6.6 ± 2.8 in group V, noradrenaline (ng/ml) 3.6 ± 0.6 vs. 15.1 ± 3.6 in group V). Reduction of interstitial fibrosis as well as mRNA levels of α-SMA, TNF-α, and IL-6 was observed in the hearts of Gallein treated animals (59.7 ± 14.1%, 43.8 ± 9.3% and 28.5 ± 3.5% relative to group V, respectively). On the molecular level, Gallein treated mice showed less GRK2 and PI3Kγ membrane recruitment, and less Akt activation (42.9 ± 7.1%, 66.7 ± 13.3% and 46.2 ± 7.7% relative to group V, respectively) in myocardial lysates. In conclusion , these data suggest a possible therapeutic role for small molecule Gβγ inhibition in halting the progression of HF, potentially via inhibition of the Gβγ-GRK2-PI3Kγ-Akt pathway. The combined effect of halting HF progression and reducing plasma catecholamines suggests a possible systemic role for small molecule Gβγ inhibition in both the heart and the adrenal gland.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Shintaro Kinugawa ◽  
Shouji Matsushima ◽  
Takashi Yokota ◽  
Yukihiro Ohta ◽  
Naoki Inoue ◽  
...  

Type 2 diabetes mellitus (DM) adversely affects the outcomes in patients with myocardial infarction (MI), which is associated with the development of left ventricular (LV) remodeling and failure. NAD(P)H oxidase-derived superoxide (O 2 − ) production is increased in DM. However, its pathophysiological significance in advanced post-MI LV failure associated with DM remains unestablished. We thus determined whether an inhibitor of NAD(P)H oxidase activation, apocynin, could attenuate the exacerbated LV remodeling and heart failure after MI in high-fat diet (HFD)-induced obese mice with DM. Male C57BL/6J mice were fed on either HFD or normal diet (ND) for 8 weeks. At 4 weeks of feeding, MI was created in all mice by ligating left coronary artery. MI mice were treated with either apocynin (10 mmol/l in drinking water; n = 10 for ND and n = 11 for HFD) or vehicle (n = 15 for ND and n = 13 for HFD). HFD significantly increased body weight (BW), adipose tissue mass, fasting plasma glucose and insulin levels compared to ND after 4 and 8 weeks. HFD + MI had significantly greater LV end-diastolic diameter (LVEDD; 5.7 ± 0.1 vs. 5.3 ± 0.2 mm) by echocardiography, end-diastolic pressure (EDP; 12 ± 2 vs. 8 ± 1 mmHg) and lung weight/tibial length (10.1 ± 0.3 vs. 8.7 ± 0.7 mg/mm) than ND + MI, which was accompanied by an increased interstitial fibrosis of non-infarcted LV. Treatment of HFD + MI with apocynin significantly decreased LVEDD (5.4 ± 0.1 mm), LVEDP (9.7 ± 0.8 mmHg), lung weight/tibial length (9.0 ± 0.3 mg/mm), and concomitantly interstitial fibrosis of non-infarcted LV to ND + MI level without affecting BW, glucose metabolism, infarct size and aortic pressure. On the other hand, treatment of ND + MI with apocynin did not affect LV remodeling and failure. NAD(P)H oxidase activity, O 2 − production measured by lucigenin chemiluminescence, and thiobarbituric acid-reactive substances were increased in non-infarcted LV tissues from HFD + MI, all of which were also attenuated by apocynin to ND + MI level. Type 2 DM was associated with the exacerbation of LV remodeling and failure after MI via increasing NAD(P)H oxidase derived O 2 − production, which may be a novel important therapeutic target in advanced heart failure with DM.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Jorge E Massare ◽  
R. Haris Naseem ◽  
Jeff M Berry ◽  
Farhana Rob ◽  
Joseph A Hill

Background: Sudden cardiac death due to ventricular tachyarrhythmia (VT) accounts for a large number of deaths in patients with heart failure. Several cellular events which occur during pathological remodeling of the failing ventricle are implicated in the genesis of VT, including action potential prolongation, dysregulation of intercellular coupling, and fibrosis. Interestingly, transgenic mice over-expressing constitutively active PKD (caPKD) develop severe heart failure without interstitial fibrosis, an otherwise prominent feature of the disease. The goal here was to define the role of interstitial fibrosis in the proarrhythmic phenotype of failing myocardium. Methods and Results: We performed echocardiographic, electrocardiographic, and in vivo electrophysiologic studies in 8 –10 week old caPKD mice (n=12). Similar studies were performed in mice with load-induced heart failure induced by surgical pressure overload (sTAB, n=10), a model of heart failure with prominent interstitial fibrosis. caPKD and sTAB mice showed similar degrees of ventricular dilation (LV systolic dimension caPKD 2.4±0.8 mm vs 3.0±0.9 sTAB, p=0.18) and severe systolic dysfunction (% fractional shortening caPKD 25±11 vs 28±11 sTAB, p=0.62). Yet, caPKD mice showed minimal interstitial fibrosis, comparable to unoperated controls. With the exception of ventricular refractory period, which was higher in caPKD (48±11 msec vs 36±7 TAB and 40±8 WT, p<0.05), other electrocardiographic and electrophysiologic variables were similar among the 3 groups (p=NS), including heart rate, QT duration, and mean VT threshold. As expected, VT (≥3beats) was readily inducible by programmed stimulation in sTAB mice (7/10). By contrast, VT was less inducible in caPKD mice (4/12; p=0.1 vs TAB and <0.05 vs WT), and uninducible in unoperated controls (0/12). VT was polymorphic in both models, but episodes of VT were both slower (VT cycle length caPKD 58±4.0 msec vs 48±1 sTAB, p=0.016) and longer in caPKD mice (caPKD 1.8±0.7 sec vs 0.47±0.3 sTAB, p=0.038). Conclusion: Interstitial fibrosis contributes to the inducibility, maintenance, and rate of VT in heart failure. These findings highlight the importance of anti-remodeling therapies known to target fibrosis in heart disease.


2006 ◽  
Vol 27 (2) ◽  
pp. 156-170 ◽  
Author(s):  
Stephan Schiekofer ◽  
Ichiro Shiojima ◽  
Kaori Sato ◽  
Gennaro Galasso ◽  
Yuichi Oshima ◽  
...  

To investigate molecular mechanisms involved in the development of cardiac hypertrophy and heart failure, we developed a tetracycline-regulated transgenic system to conditionally switch a constitutively active form of the Akt1 protein kinase on or off in the adult heart. Short-term activation (2 wk) of Akt1 resulted in completely reversible hypertrophy with maintained contractility. In contrast, chronic Akt1 activation (6 wk) induced extensive cardiac hypertrophy, severe contractile dysfunction, and massive interstitial fibrosis. The focus of this study was to create a transcript expression profile of the heart as it undergoes reversible Akt1-mediated hypertrophy and during the transition from compensated hypertrophy to heart failure. Heart tissue was analyzed before transgene induction, 2 wk after transgene induction, 2 wk of transgene induction followed by 2 days of repression, 6 wk after transgene induction, and 6 wk of transgene induction followed by 2 wk of repression. Acute overexpression of Akt1 (2 wk) leads to changes in the expression of 826 transcripts relative to noninduced hearts, whereas chronic induction (6 wk) led to changes in the expression of 1,611, of which 65% represented transcripts that were regulated during the pathological phase of heart growth. Another set of genes identified was uniquely regulated during heart regression but not growth, indicating that nonoverlapping transcription programs participate in the processes of cardiac hypertrophy and atrophy. These data define the gene regulatory programs downstream of Akt that control heart size and contribute to the transition from compensatory hypertrophy to heart failure.


Sign in / Sign up

Export Citation Format

Share Document